/* Copyright (C) 2012 Lina Kulakova Copyright (C) 2013, 2014 Martin Lee Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #undef ulong #define ulong ulongxx/* interferes with system includes */ #include #undef ulong #include #define ulong mp_limb_t #include "fmpz_mod_poly.h" int fmpz_mod_poly_is_irreducible_ddf(const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx) { const fmpz * p = fmpz_mod_ctx_modulus(ctx); fmpz_mod_poly_t f, v, vinv, tmp; fmpz_mod_poly_t *h, *H, *I; fmpz_mat_t HH; slong i, j, l, m, n, d; double beta; int result = 1; n = fmpz_mod_poly_degree(poly, ctx); if (n < 2) return 1; if (!fmpz_mod_poly_is_squarefree(poly, ctx)) return 0; beta = 0.5 * (1. - (log(2) / log(n))); l = ceil(pow(n, beta)); m = ceil(0.5 * n / l); /* initialization */ fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_init(v, ctx); fmpz_mod_poly_init(vinv, ctx); fmpz_mod_poly_init(tmp, ctx); if (!(h = flint_malloc((2 * m + l + 1) * sizeof(fmpz_mod_poly_struct)))) { flint_printf("Exception (fmpz_mod_poly_is_irreducible_ddf): \n"); flint_printf("Not enough memory.\n"); flint_abort(); } H = h + (l + 1); I = H + m; for (i = 0; i < 2*m + l + 1; i++) fmpz_mod_poly_init(h[i], ctx); fmpz_mod_poly_make_monic(v, poly, ctx); fmpz_mod_poly_reverse(vinv, v, v->length, ctx); fmpz_mod_poly_inv_series_newton(vinv, vinv, v->length, ctx); /* compute baby steps: h[i]=x^{p^i}mod v */ fmpz_mod_poly_set_coeff_ui(h[0], 1, 1, ctx); fmpz_mod_poly_powmod_x_fmpz_preinv(h[1], p, v, vinv, ctx); if (fmpz_sizeinbase(p, 2) > ((n_sqrt(v->length - 1) + 1) * 3) / 4) { for (i= 1; i < FLINT_BIT_COUNT (l); i++) fmpz_mod_poly_compose_mod_brent_kung_vec_preinv (*(h + 1 + (1 << (i - 1))), *(h + 1), (1 << (i - 1)), (1 << (i - 1)), *(h + (1 << (i - 1))), v, vinv, ctx); fmpz_mod_poly_compose_mod_brent_kung_vec_preinv (*(h + 1 + (1 << (i - 1))), *(h + 1), (1 << (i - 1)), l - (1 << (i - 1)), *(h + (1 << (i - 1))), v, vinv, ctx); } else { for (i = 2; i < l + 1; i++) { fmpz_mod_poly_init(h[i], ctx); fmpz_mod_poly_powmod_fmpz_binexp_preinv(h[i], h[i - 1], p, v, vinv, ctx); } } /* compute coarse distinct-degree factorisation */ fmpz_mod_poly_set(H[0], h[l], ctx); fmpz_mat_init(HH, n_sqrt(v->length - 1) + 1, v->length - 1); fmpz_mod_poly_precompute_matrix(HH, H[0], v, vinv, ctx); d = 1; for (j = 0; j < m; j++) { /* compute giant steps: H[i]=x^{p^(li)}mod v */ if (j > 0) fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(H[j], H[j - 1], HH, v, vinv, ctx); /* compute interval polynomials */ fmpz_mod_poly_set_coeff_ui(I[j], 0, 1, ctx); for (i = l - 1; (i >= 0) && (2*d <= v->length - 1); i--, d++) { fmpz_mod_poly_rem(tmp, h[i], v, ctx); fmpz_mod_poly_sub(tmp, H[j], tmp, ctx); fmpz_mod_poly_mulmod_preinv(I[j], tmp, I[j], v, vinv, ctx); } /* compute F_j=f^{[j*l+1]} * ... * f^{[j*l+l]} */ /* F_j is stored on the place of I_j */ fmpz_mod_poly_gcd(I[j], v, I[j], ctx); if (I[j]->length > 1) { result = 0; break; } } fmpz_mod_poly_clear(f, ctx); fmpz_mod_poly_clear(v, ctx); fmpz_mod_poly_clear(vinv, ctx); fmpz_mod_poly_clear(tmp, ctx); fmpz_mat_clear(HH); for (i = 0; i < l + 1; i++) fmpz_mod_poly_clear(h[i], ctx); for (i = 0; i < m; i++) { fmpz_mod_poly_clear(H[i], ctx); fmpz_mod_poly_clear(I[i], ctx); } flint_free(h); return result; }