/* Copyright (C) 2012 Lina Kulakova This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include #include #include #include #include "flint.h" #include "fmpz_mod_poly.h" #define NP 20 /* number of moduli */ #define ND 8 /* number of degrees */ /* Benchmarking code for factorisation in fmpz_mod_poly. Test how the relation between n (degree of polynomial) and p affects working time for Cantor-Zassenhaus, Berlekamp and Kaltofen-Shoup algorithms. p and n are chosen independently. */ int main(void) { FLINT_TEST_INIT(state); fmpz_mod_poly_t f, g; fmpz_mod_poly_factor_t res; fmpz_t p; fmpz_mod_ctx_t ctx; mpz_t pz, curr; int i, j, k, n, num; double t, T1, T2, T3; const slong degs[] = {8, 16, 32, 64, 128, 256, 512, 1024}; const int iter_count[] = {10000, 5000, 1000, 500, 300, 100, 50, 20}; mpz_init(pz); mpz_init(curr); fmpz_init(p); fmpz_mod_ctx_init_ui(ctx, 2); flint_printf("Random polynomials\n"); flint_mpz_set_ui(pz, 2); flint_mpz_set_ui(curr, 10); for (i = 0; i < NP; i++) { fmpz_set_mpz(p, pz); fmpz_mod_ctx_set_modulus(ctx, p); flint_printf("========== p: "); fmpz_print(p); flint_printf(" ==========\n"); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_randtest_not_zero(f, state, n, ctx); t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_cantor_zassenhaus(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_berlekamp(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_kaltofen_shoup(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; fmpz_mod_poly_clear(f, ctx); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } mpz_nextprime(pz, curr); flint_mpz_mul_ui(curr, curr, 10); } /* This code checks whether fmpz_mod_poly_factor made a correct choice between CZ and KS */ flint_printf("Check choice correctness\n"); flint_mpz_set_ui(pz, 2); flint_mpz_set_ui(curr, 10); for (i = 0; i < NP; i++) { fmpz_set_mpz(p, pz); fmpz_mod_ctx_set_modulus(ctx, p); flint_printf("========== p: "); fmpz_print(p); flint_printf(" ==========\n"); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_randtest_not_zero(f, state, n, ctx); t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_cantor_zassenhaus(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_kaltofen_shoup(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; fmpz_mod_poly_clear(f, ctx); } flint_printf("CZ: %.2lf F: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } mpz_nextprime(pz, curr); flint_mpz_mul_ui(curr, curr, 10); } flint_printf("Irreducible polynomials\n"); flint_mpz_set_ui(pz, 2); flint_mpz_set_ui(curr, 10); for (i = 0; i < NP; i++) { fmpz_set_mpz(p, pz); fmpz_mod_ctx_set_modulus(ctx, p); flint_printf("========== p: "); fmpz_print(p); flint_printf(" ==========\n"); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_randtest_irreducible(f, state, n, ctx); t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_cantor_zassenhaus(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_berlekamp(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_kaltofen_shoup(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; fmpz_mod_poly_clear(f, ctx); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } mpz_nextprime(pz, curr); flint_mpz_mul_ui(curr, curr, 10); } flint_printf("Product of two irreducible polynomials\n"); flint_mpz_set_ui(pz, 2); flint_mpz_set_ui(curr, 10); for (i = 0; i < NP; i++) { fmpz_set_mpz(p, pz); fmpz_mod_ctx_set_modulus(ctx, p); flint_printf("========== p: "); fmpz_print(p); flint_printf(" ==========\n"); fflush(stdout); for (j = 0; j < ND; j++) { n = (degs[j] >> 1); flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_init(g, ctx); fmpz_mod_poly_randtest_irreducible(f, state, n, ctx); fmpz_mod_poly_randtest_irreducible(g, state, n, ctx); fmpz_mod_poly_mul(f, f, g, ctx); t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_cantor_zassenhaus(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_berlekamp(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_kaltofen_shoup(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; fmpz_mod_poly_clear(f, ctx); fmpz_mod_poly_clear(g, ctx); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } mpz_nextprime(pz, curr); flint_mpz_mul_ui(curr, curr, 10); } flint_printf("Product of 8 small irreducible polynomials\n"); flint_mpz_set_ui(pz, 2); flint_mpz_set_ui(curr, 10); for (i = 0; i < NP; i++) { fmpz_set_mpz(p, pz); fmpz_mod_ctx_set_modulus(ctx, p); flint_printf("========== p: "); fmpz_print(p); flint_printf(" ==========\n"); fflush(stdout); for (j = 1; j < ND; j++) { n = (degs[j] >> 3); flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_init(g, ctx); fmpz_mod_poly_randtest_irreducible(f, state, n, ctx); for (num = 1; num < 8; num++) { fmpz_mod_poly_randtest_irreducible(g, state, n, ctx); fmpz_mod_poly_mul(f, f, g, ctx); } t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_cantor_zassenhaus(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_berlekamp(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); fmpz_mod_poly_factor_init(res, ctx); fmpz_mod_poly_factor_kaltofen_shoup(res, f, ctx); fmpz_mod_poly_factor_clear(res, ctx); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; fmpz_mod_poly_clear(f, ctx); fmpz_mod_poly_clear(g, ctx); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } mpz_nextprime(pz, curr); flint_mpz_mul_ui(curr, curr, 10); } mpz_clear(pz); mpz_clear(curr); fmpz_clear(p); fmpz_mod_ctx_clear(ctx); FLINT_TEST_CLEANUP(state); return EXIT_SUCCESS; }