/* Copyright (C) 2016 William Hart Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mpoly.h" slong _fmpz_mpoly_add1( fmpz * Acoeffs, ulong * Aexps, const fmpz * Bcoeffs, const ulong * Bexps, slong Blen, const fmpz * Ccoeffs, const ulong * Cexps, slong Clen, ulong maskhi) { slong i = 0, j = 0, k = 0; while (i < Blen && j < Clen) { if ((Bexps[i]^maskhi) > (Cexps[j]^maskhi)) { Aexps[k] = Bexps[i]; fmpz_set(Acoeffs + k, Bcoeffs + i); i++; k++; } else if ((Bexps[i]^maskhi) == (Cexps[j]^maskhi)) { Aexps[k] = Bexps[i]; fmpz_add(Acoeffs + k, Bcoeffs + i, Ccoeffs + j); k += !fmpz_is_zero(Acoeffs + k); i++; j++; } else { Aexps[k] = Cexps[j]; fmpz_set(Acoeffs + k, Ccoeffs + j); j++; k++; } } while (i < Blen) { Aexps[k] = Bexps[i]; fmpz_set(Acoeffs + k, Bcoeffs + i); i++; k++; } while (j < Clen) { Aexps[k] = Cexps[j]; fmpz_set(Acoeffs + k, Ccoeffs + j); j++; k++; } return k; } slong _fmpz_mpoly_add( fmpz * Acoeffs, ulong * Aexps, const fmpz * Bcoeffs, const ulong * Bexps, slong Blen, const fmpz * Ccoeffs, const ulong * Cexps, slong Clen, slong N, const ulong * cmpmask) { slong i = 0, j = 0, k = 0; if (N == 1) { return _fmpz_mpoly_add1(Acoeffs, Aexps, Bcoeffs, Bexps, Blen, Ccoeffs, Cexps, Clen, cmpmask[0]); } while (i < Blen && j < Clen) { int cmp = mpoly_monomial_cmp(Bexps + i*N, Cexps + j*N, N, cmpmask); if (cmp > 0) { mpoly_monomial_set(Aexps + k*N, Bexps + i*N, N); fmpz_set(Acoeffs + k, Bcoeffs + i); i++; k++; } else if (cmp == 0) { mpoly_monomial_set(Aexps + k*N, Bexps + i*N, N); fmpz_add(Acoeffs + k, Bcoeffs + i, Ccoeffs + j); k += !fmpz_is_zero(Acoeffs + k); i++; j++; } else { mpoly_monomial_set(Aexps + k*N, Cexps + j*N, N); fmpz_set(Acoeffs + k, Ccoeffs + j); j++; k++; } } while (i < Blen) { mpoly_monomial_set(Aexps + k*N, Bexps + i*N, N); fmpz_set(Acoeffs + k, Bcoeffs + i); i++; k++; } while (j < Clen) { mpoly_monomial_set(Aexps + k*N, Cexps + j*N, N); fmpz_set(Acoeffs + k, Ccoeffs + j); j++; k++; } return k; } void fmpz_mpoly_add_inplace(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_ctx_t ctx) { slong i, s, new_len, N; slong Alen = A->length; slong Blen = B->length; ulong * Bexps, * cmpmask; int cmp, freeBexps; flint_bitcnt_t Abits; fmpz_mpoly_t T; TMP_INIT; FLINT_ASSERT(A != B); FLINT_ASSERT(Alen > 0); FLINT_ASSERT(Blen > 0); TMP_START; if (A->bits <= B->bits) { Abits = B->bits; if (A->bits < B->bits) fmpz_mpoly_repack_bits_inplace(A, Abits, ctx); N = mpoly_words_per_exp(Abits, ctx->minfo); Bexps = B->exps; freeBexps = 0; } else { Abits = A->bits; N = mpoly_words_per_exp(Abits, ctx->minfo); Bexps = (ulong *) flint_malloc(N*Blen*sizeof(ulong)); mpoly_repack_monomials(Bexps, Abits, B->exps, B->bits, Blen, ctx->minfo); freeBexps = 1; } cmpmask = (ulong *) TMP_ALLOC(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, Abits, ctx->minfo); /* We will move s terms from the end of A. The complexity is roughly s from search s from move s + B->length from addition s from move cleanup So as long as 4*s + B->length < A->length + B->length, it is technically a win over the simple T = A + B; swap(A, T) */ for (s = 0; s < Alen/4; s++) { cmp = mpoly_monomial_cmp(A->exps + N*(Alen - s - 1), Bexps + N*0, N, cmpmask); if (cmp >= 0) { s += (cmp == 0); goto doit; } } fmpz_mpoly_init3(T, Alen + Blen, Abits, ctx); T->length = _fmpz_mpoly_add(T->coeffs, T->exps, A->coeffs, A->exps, Alen, B->coeffs, Bexps, Blen, N, cmpmask); fmpz_mpoly_swap(A, T, ctx); fmpz_mpoly_clear(T, ctx); goto cleanup; doit: FLINT_ASSERT(0 <= s && s <= Alen); FLINT_ASSERT(s == 0 || mpoly_monomial_cmp(A->exps + N*(Alen - s), Bexps + N*0, N, cmpmask) <= 0); FLINT_ASSERT(s == Alen || mpoly_monomial_cmp(A->exps + N*(Alen - s - 1), Bexps + N*0, N, cmpmask) > 0); fmpz_mpoly_fit_length(A, Alen + Blen + s, ctx); mpoly_copy_monomials(A->exps + N*(Alen + Blen), A->exps + N*(Alen - s), s, N); _fmpz_vec_swap(A->coeffs + Alen + Blen, A->coeffs + Alen - s, s); new_len = _fmpz_mpoly_add(A->coeffs + Alen - s, A->exps + N*(Alen - s), A->coeffs + (Alen + Blen), A->exps + N*(Alen + Blen), s, B->coeffs, Bexps, Blen, N, cmpmask); for (i = 0; i < s; i++) _fmpz_demote(A->coeffs + Alen + Blen + i); _fmpz_mpoly_set_length(A, Alen - s + new_len, ctx); cleanup: if (freeBexps) flint_free(Bexps); TMP_END; return; } void fmpz_mpoly_add(fmpz_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mpoly_t C, const fmpz_mpoly_ctx_t ctx) { slong Alen, N; flint_bitcnt_t Abits; ulong * Bexps = B->exps, * Cexps = C->exps; ulong * cmpmask; int freeBexps = 0, freeCexps = 0; TMP_INIT; if (fmpz_mpoly_is_zero(B, ctx)) { fmpz_mpoly_set(A, C, ctx); return; } else if (fmpz_mpoly_is_zero(C, ctx)) { fmpz_mpoly_set(A, B, ctx); return; } else if (A == B) { if (A == C) _fmpz_vec_add(A->coeffs, A->coeffs, A->coeffs, A->length); else fmpz_mpoly_add_inplace(A, C, ctx); return; } else if (A == C) { fmpz_mpoly_add_inplace(A, B, ctx); return; } TMP_START; Abits = FLINT_MAX(B->bits, C->bits); N = mpoly_words_per_exp(Abits, ctx->minfo); cmpmask = (ulong *) TMP_ALLOC(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, Abits, ctx->minfo); if (Abits > B->bits) { freeBexps = 1; Bexps = (ulong *) flint_malloc(N*B->length*sizeof(ulong)); mpoly_repack_monomials(Bexps, Abits, B->exps, B->bits, B->length, ctx->minfo); } if (Abits > C->bits) { freeCexps = 1; Cexps = (ulong *) flint_malloc(N*C->length*sizeof(ulong)); mpoly_repack_monomials(Cexps, Abits, C->exps, C->bits, C->length, ctx->minfo); } fmpz_mpoly_fit_length_reset_bits(A, B->length + C->length, Abits, ctx); Alen = _fmpz_mpoly_add(A->coeffs, A->exps, B->coeffs, Bexps, B->length, C->coeffs, Cexps, C->length, N, cmpmask); _fmpz_mpoly_set_length(A, Alen, ctx); if (freeBexps) flint_free(Bexps); if (freeCexps) flint_free(Cexps); TMP_END; }