/* Copyright (C) 2017 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_mpoly.h" #include "longlong.h" /* As for divrem_monagan_pearce1 except that an array of divisor polynomials is passed and an array of quotient polynomials is returned. These are not in low level format. */ slong _fmpz_mpoly_divrem_ideal_monagan_pearce1(fmpz_mpoly_struct ** polyq, fmpz ** polyr, ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2, slong len2, fmpz_mpoly_struct * const * poly3, ulong * const * exp3, slong len, slong bits, const fmpz_mpoly_ctx_t ctx, ulong maskhi) { slong i, j, p, l, w; slong next_loc; slong * store, * store_base; slong len3; slong heap_len = 2; /* heap zero index unused */ mpoly_heap1_s * heap; mpoly_nheap_t ** chains; slong ** hinds; mpoly_nheap_t * x; fmpz * p2 = *polyr; ulong * e2 = *expr; ulong exp, texp; ulong c[3]; /* for accumulating coefficients */ ulong mask; ulong * ub; slong * k, * s; fmpz_t qc, q; fmpz * mb; int small; slong bits2, bits3; int d1, d2, div_flag; TMP_INIT; TMP_START; fmpz_init(q); fmpz_init(qc); bits2 = _fmpz_vec_max_bits(poly2, len2); chains = (mpoly_nheap_t **) TMP_ALLOC(len*sizeof(mpoly_nheap_t *)); hinds = (slong **) TMP_ALLOC(len*sizeof(slong *)); bits3 = 0; len3 = 0; for (w = 0; w < len; w++) { chains[w] = (mpoly_nheap_t *) TMP_ALLOC((poly3[w]->length)*sizeof(mpoly_nheap_t)); hinds[w] = (slong *) TMP_ALLOC((poly3[w]->length)*sizeof(slong)); bits3 = FLINT_MAX(bits3, FLINT_ABS(fmpz_mpoly_max_bits(poly3[w]))); len3 += poly3[w]->length; for (i = 0; i < poly3[w]->length; i++) hinds[w][i] = 1; } /* allow one bit for sign, one bit for subtraction */ small = FLINT_ABS(bits2) <= (FLINT_ABS(bits3) + FLINT_BIT_COUNT(len3) + FLINT_BITS - 2) && FLINT_ABS(bits3) <= FLINT_BITS - 2; next_loc = len3 + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap1_s *) TMP_ALLOC((len3 + 1)*sizeof(mpoly_heap1_s)); store = store_base = (slong *) TMP_ALLOC(3*len3*sizeof(slong)); k = (slong *) TMP_ALLOC(len*sizeof(slong)); s = (slong *) TMP_ALLOC(len*sizeof(slong)); ub = (ulong *) TMP_ALLOC(len*sizeof(ulong)); mb = (fmpz * ) TMP_ALLOC(len*sizeof(fmpz)); mask = mpoly_overflow_mask_sp(bits); for (w = 0; w < len; w++) { k[w] = -WORD(1); s[w] = poly3[w]->length; } l = -WORD(1); x = chains[0] + 0; x->i = -WORD(1); x->j = 0; x->p = -WORD(1); x->next = NULL; HEAP_ASSIGN(heap[1], exp2[0], x); for (i = 0; i < len; i++) { fmpz_init(mb + i); fmpz_neg(mb + i, poly3[i]->coeffs); ub[i] = ((ulong) FLINT_ABS(mb[i])) >> 1; /* abs(poly3[0])/2 */ } while (heap_len > 1) { exp = heap[1].exp; if (mpoly_monomial_overflows1(exp, mask)) goto exp_overflow; c[0] = c[1] = c[2] = 0; fmpz_zero(qc); while (heap_len > 1 && heap[1].exp == exp) { x = _mpoly_heap_pop1(heap, &heap_len, maskhi); do { *store++ = x->i; *store++ = x->j; *store++ = x->p; if (x->i != -WORD(1)) hinds[x->p][x->i] |= WORD(1); if (small) { if (x->i == -WORD(1)) _fmpz_mpoly_sub_uiuiui_fmpz(c, poly2 + x->j); else _fmpz_mpoly_addmul_uiuiui_fmpz(c, poly3[x->p]->coeffs[x->i], polyq[x->p]->coeffs[x->j]); } else { if (x->i == -WORD(1)) fmpz_sub(qc, qc, poly2 + x->j); else fmpz_addmul(qc, poly3[x->p]->coeffs + x->i, polyq[x->p]->coeffs + x->j); } } while ((x = x->next) != NULL); } while (store > store_base) { p = *--store; j = *--store; i = *--store; if (i == -WORD(1)) { if (j + 1 < len2) { x = chains[0] + 0; x->i = -WORD(1); x->j = j + 1; x->p = p; x->next = NULL; _mpoly_heap_insert1(heap, exp2[x->j], x, &next_loc, &heap_len, maskhi); } } else { if ( (i + 1 < poly3[p]->length) && (hinds[p][i + 1] == 2*j + 1) ) { x = chains[p] + i + 1; x->i = i + 1; x->j = j; x->p = p; x->next = NULL; hinds[p][x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, exp3[x->p][x->i] + polyq[x->p]->exps[x->j], x, &next_loc, &heap_len, maskhi); } if (j == k[p]) { s[p]++; } else if ( ((hinds[p][i] & 1) == 1) && ((i == 1) || (hinds[p][i - 1] >= 2*(j + 2) + 1)) ) { x = chains[p] + i; x->i = i; x->j = j + 1; x->p = p; x->next = NULL; hinds[p][x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, exp3[x->p][x->i] + polyq[x->p]->exps[x->j], x, &next_loc, &heap_len, maskhi); } } } if ((small && (c[2] != 0 || c[1] != 0 || c[0] != 0)) || (!small && !fmpz_is_zero(qc))) { div_flag = 0; for (w = 0; w < len; w++) { d1 = mpoly_monomial_divides1(&texp, exp, exp3[w][0], mask); if (d1) { d2 = 0; if (small) { ulong d[3]; if (0 > (slong) c[2]) mpn_neg(d, c, 3); else flint_mpn_copyi(d, c, 3); if (d[2] != 0 || ub[w] <= d[1] || (ub[w] == 0 && 0 > (slong) d[0])) /* quotient not a small */ { fmpz_set_signed_uiuiui(qc, c[2], c[1], c[0]); small = 0; } else /* quotient fits a small */ { slong r1; slong tq; sdiv_qrnnd(tq, r1, c[1], c[0], mb[w]); if (tq > COEFF_MAX || tq < COEFF_MIN) { small = 0; fmpz_set_signed_uiuiui(qc, c[2], c[1], c[0]); } else { div_flag = (r1 == 0); d2 = tq != 0; if (d2) { k[w]++; fmpz_mpoly_fit_length(polyq[w], k[w] + 1, ctx); fmpz_set_si(polyq[w]->coeffs + k[w], tq); polyq[w]->exps[k[w]] = texp; } c[0] = r1; c[2] = c[1] = -(slong)(r1 < 0); } } } /* quotient non-small case */ if (!small) { fmpz_fdiv_qr(q, qc, qc, mb + w); div_flag = fmpz_is_zero(qc); d2 = !fmpz_is_zero(q); if (d2) { k[w]++; fmpz_mpoly_fit_length(polyq[w], k[w] + 1, ctx); fmpz_set(polyq[w]->coeffs + k[w], q); polyq[w]->exps[k[w]] = texp; } } if (d2) { if (s[w] > 1) { i = 1; x = chains[w] + i; x->i = i; x->j = k[w]; x->p = w; x->next = NULL; hinds[w][x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, exp3[w][i] + polyq[w]->exps[k[w]], x, &next_loc, &heap_len, maskhi); } s[w] = 1; } } } if (!div_flag) { l++; _fmpz_mpoly_fit_length(&p2, &e2, allocr, l + 1, 1); if (small) { fmpz_set_signed_uiuiui(p2 + l, c[2], c[1], c[0]); fmpz_neg(p2 + l, p2 + l); } else { fmpz_neg(p2 + l, qc); } e2[l] = exp; } } } cleanup: for (i = 0; i < len; i++) _fmpz_mpoly_set_length(polyq[i], k[i] + 1, ctx); for (i = 0; i < len; i++) fmpz_clear(mb + i); fmpz_clear(qc); fmpz_clear(q); (*polyr) = p2; (*expr) = e2; TMP_END; return l + 1; exp_overflow: for (i = 0; i < l; i++) _fmpz_demote(p2 + i); for (w = 0; w < len; w++) { for (i = 0; i < k[w]; i++) _fmpz_demote(polyq[w]->coeffs + i); k[w] = -WORD(1); /* we add 1 to this before exit */ } l = -WORD(2); /* we add 1 to this upon return */ goto cleanup; } /* As for divrem_monagan_pearce except that an array of divisor polynomials is passed and an array of quotient polynomials is returned. These are not in low level format. */ slong _fmpz_mpoly_divrem_ideal_monagan_pearce(fmpz_mpoly_struct ** polyq, fmpz ** polyr, ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2, slong len2, fmpz_mpoly_struct * const * poly3, ulong * const * exp3, slong len, slong N, slong bits, const fmpz_mpoly_ctx_t ctx, const ulong * cmpmask) { slong i, j, p, l, w; slong next_loc; slong * store, * store_base; slong len3; slong heap_len = 2; /* heap zero index unused */ mpoly_heap_s * heap; mpoly_nheap_t ** chains; slong ** hinds; mpoly_nheap_t * x; fmpz * p2 = *polyr; ulong * e2 = *expr; ulong * exp, * exps, * texp; ulong ** exp_list; ulong c[3]; /* for accumulating coefficients */ slong exp_next; ulong mask = 0; ulong * ub; slong * k, * s; fmpz_t qc, q; fmpz * mb; int small; slong bits2, bits3; int d1, d2, div_flag; TMP_INIT; if (N == 1) return _fmpz_mpoly_divrem_ideal_monagan_pearce1(polyq, polyr, expr, allocr, poly2, exp2, len2, poly3, exp3, len, bits, ctx, cmpmask[0]); TMP_START; fmpz_init(q); fmpz_init(qc); bits2 = _fmpz_vec_max_bits(poly2, len2); chains = (mpoly_nheap_t **) TMP_ALLOC(len*sizeof(mpoly_nheap_t *)); hinds = (slong **) TMP_ALLOC(len*sizeof(slong *)); bits3 = 0; len3 = 0; for (w = 0; w < len; w++) { chains[w] = (mpoly_nheap_t *) TMP_ALLOC((poly3[w]->length)*sizeof(mpoly_nheap_t)); hinds[w] = (slong *) TMP_ALLOC((poly3[w]->length)*sizeof(slong)); bits3 = FLINT_MAX(bits3, FLINT_ABS(fmpz_mpoly_max_bits(poly3[w]))); len3 += poly3[w]->length; for (i = 0; i < poly3[w]->length; i++) hinds[w][i] = 1; } /* allow one bit for sign, one bit for subtraction */ small = FLINT_ABS(bits2) <= (FLINT_ABS(bits3) + FLINT_BIT_COUNT(len3) + FLINT_BITS - 2) && FLINT_ABS(bits3) <= FLINT_BITS - 2; next_loc = len3 + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap_s *) TMP_ALLOC((len3 + 1)*sizeof(mpoly_heap_s)); store = store_base = (slong *) TMP_ALLOC(3*len3*sizeof(slong)); exps = (ulong *) TMP_ALLOC(len3*N*sizeof(ulong)); exp_list = (ulong **) TMP_ALLOC(len3*sizeof(ulong *)); texp = (ulong *) TMP_ALLOC(N*sizeof(ulong)); exp = (ulong *) TMP_ALLOC(N*sizeof(ulong)); k = (slong *) TMP_ALLOC(len*sizeof(slong)); s = (slong *) TMP_ALLOC(len*sizeof(slong)); ub = (ulong *) TMP_ALLOC(len*sizeof(ulong)); mb = (fmpz * ) TMP_ALLOC(len*sizeof(fmpz)); exp_next = 0; for (i = 0; i < len3; i++) exp_list[i] = exps + i*N; mask = bits <= FLINT_BITS ? mpoly_overflow_mask_sp(bits) : 0; for (w = 0; w < len; w++) { k[w] = -WORD(1); s[w] = poly3[w]->length; } l = -WORD(1); x = chains[0] + 0; x->i = -WORD(1); x->j = 0; x->p = -WORD(1); x->next = NULL; heap[1].next = x; heap[1].exp = exp_list[exp_next++]; mpoly_monomial_set(heap[1].exp, exp2, N); for (i = 0; i < len; i++) { fmpz_init(mb + i); fmpz_neg(mb + i, poly3[i]->coeffs); ub[i] = ((ulong) FLINT_ABS(mb[i])) >> 1; /* abs(poly3[0])/2 */ } while (heap_len > 1) { mpoly_monomial_set(exp, heap[1].exp, N); c[0] = c[1] = c[2] = 0; fmpz_zero(qc); if (bits <= FLINT_BITS) { if (mpoly_monomial_overflows(exp, N, mask)) goto exp_overflow; } else { if (mpoly_monomial_overflows_mp(exp, N, bits)) goto exp_overflow; } while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N)) { exp_list[--exp_next] = heap[1].exp; x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask); do { *store++ = x->i; *store++ = x->j; *store++ = x->p; if (x->i != -WORD(1)) hinds[x->p][x->i] |= WORD(1); if (small) { if (x->i == -WORD(1)) _fmpz_mpoly_sub_uiuiui_fmpz(c, poly2 + x->j); else _fmpz_mpoly_addmul_uiuiui_fmpz(c, poly3[x->p]->coeffs[x->i], polyq[x->p]->coeffs[x->j]); } else { if (x->i == -WORD(1)) fmpz_sub(qc, qc, poly2 + x->j); else fmpz_addmul(qc, poly3[x->p]->coeffs + x->i, polyq[x->p]->coeffs + x->j); } } while ((x = x->next) != NULL); } while (store > store_base) { p = *--store; j = *--store; i = *--store; if (i == -WORD(1)) { if (j + 1 < len2) { x = chains[0] + 0; x->i = -WORD(1); x->j = j + 1; x->p = p; x->next = NULL; mpoly_monomial_set(exp_list[exp_next], exp2 + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } else { /* should we go right */ if ( (i + 1 < poly3[p]->length) && (hinds[p][i + 1] == 2*j + 1) ) { x = chains[p] + i + 1; x->i = i + 1; x->j = j; x->p = p; x->next = NULL; hinds[p][x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], exp3[x->p] + x->i*N, polyq[x->p]->exps + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } /* should we go up? */ if (j == k[p]) { s[p]++; } else if ( ((hinds[p][i] & 1) == 1) && ((i == 1) || (hinds[p][i - 1] >= 2*(j + 2) + 1)) ) { x = chains[p] + i; x->i = i; x->j = j + 1; x->p = p; x->next = NULL; hinds[p][x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], exp3[x->p] + x->i*N, polyq[x->p]->exps + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } } if ((small && (c[2] != 0 || c[1] != 0 || c[0] != 0)) || (!small && !fmpz_is_zero(qc))) { div_flag = 0; for (w = 0; w < len; w++) { if (bits <= FLINT_BITS) d1 = mpoly_monomial_divides(texp, exp, exp3[w], N, mask); else d1 = mpoly_monomial_divides_mp(texp, exp, exp3[w], N, bits); if (d1) { d2 = 0; if (small) { ulong d[3]; if (0 > (slong) c[2]) mpn_neg(d, c, 3); else flint_mpn_copyi(d, c, 3); if (d[2] != 0 || ub[w] <= d[1] || (ub[w] == 0 && 0 > (slong) d[0])) /* quotient not a small */ { small = 0; fmpz_set_signed_uiuiui(qc, c[2], c[1], c[0]); } else /* quotient fits a small */ { slong r1; slong tq; sdiv_qrnnd(tq, r1, c[1], c[0], mb[w]); if (tq > COEFF_MAX || tq < COEFF_MIN) { small = 0; fmpz_set_signed_uiuiui(qc, c[2], c[1], c[0]); } else { d2 = tq != 0; div_flag = r1 == 0; if (d2) { k[w]++; fmpz_mpoly_fit_length(polyq[w], k[w] + 1, ctx); fmpz_set_si(polyq[w]->coeffs + k[w], tq); mpoly_monomial_set(polyq[w]->exps + k[w]*N, texp, N); } c[0] = r1; c[2] = c[1] = -(slong)(r1 < 0); } } } /* quotient non-small case */ if (!small) { fmpz_fdiv_qr(q, qc, qc, mb + w); d2 = !fmpz_is_zero(q); div_flag = fmpz_is_zero(qc); if (d2) { k[w]++; fmpz_mpoly_fit_length(polyq[w], k[w] + 1, ctx); fmpz_set(polyq[w]->coeffs + k[w], q); mpoly_monomial_set(polyq[w]->exps + k[w]*N, texp, N); } } if (d2) { if (s[w] > 1) { i = 1; x = chains[w] + i; x->i = i; x->j = k[w]; x->p = w; x->next = NULL; hinds[w][x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], exp3[w] + i*N, polyq[w]->exps + k[w]*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } s[w] = 1; } } } if (!div_flag) { l++; _fmpz_mpoly_fit_length(&p2, &e2, allocr, l + 1, N); if (small) { fmpz_set_signed_uiuiui(p2 + l, c[2], c[1], c[0]); fmpz_neg(p2 + l, p2 + l); } else { fmpz_neg(p2 + l, qc); } mpoly_monomial_set(e2 + l*N, exp, N); } } } cleanup2: for (i = 0; i < len; i++) _fmpz_mpoly_set_length(polyq[i], k[i] + 1, ctx); for (i = 0; i < len; i++) fmpz_clear(mb + i); fmpz_clear(qc); fmpz_clear(q); (*polyr) = p2; (*expr) = e2; TMP_END; return l + 1; exp_overflow: for (i = 0; i < l; i++) _fmpz_demote(p2 + i); for (w = 0; w < len; w++) { for (i = 0; i < k[w]; i++) _fmpz_demote(polyq[w]->coeffs + i); k[w] = -WORD(1); } l = -WORD(2); goto cleanup2; } /* Assumes divisor polys don't alias any output polys */ void fmpz_mpoly_divrem_ideal_monagan_pearce(fmpz_mpoly_struct ** q, fmpz_mpoly_t r, const fmpz_mpoly_t poly2, fmpz_mpoly_struct * const * poly3, slong len, const fmpz_mpoly_ctx_t ctx) { slong i, exp_bits, N, lenr = 0; slong len3 = 0; ulong * cmpmask; ulong * exp2; ulong ** exp3; int free2 = 0; int * free3; fmpz_mpoly_t temp2; fmpz_mpoly_struct * tr; TMP_INIT; /* check none of the divisor polynomials is zero */ for (i = 0; i < len; i++) { if (poly3[i]->length == 0) flint_throw(FLINT_DIVZERO, "Divide by zero in fmpz_mpoly_divrem_ideal_monagan_pearce"); len3 = FLINT_MAX(len3, poly3[i]->length); } /* dividend is zero, write out quotients and remainder */ if (poly2->length == 0) { for (i = 0; i < len; i++) { fmpz_mpoly_zero(q[i], ctx); } fmpz_mpoly_zero(r, ctx); return; } TMP_START; free3 = (int *) TMP_ALLOC(len*sizeof(int)); exp3 = (ulong **) TMP_ALLOC(len*sizeof(ulong *)); /* compute maximum degrees that can occur in any input or output polys */ exp_bits = poly2->bits; for (i = 0; i < len; i++) exp_bits = FLINT_MAX(exp_bits, poly3[i]->bits); exp_bits = mpoly_fix_bits(exp_bits, ctx->minfo); N = mpoly_words_per_exp(exp_bits, ctx->minfo); cmpmask = (ulong *) flint_malloc(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, exp_bits, ctx->minfo); /* ensure input exponents packed to same size as output exponents */ exp2 = poly2->exps; free2 = 0; if (exp_bits > poly2->bits) { free2 = 1; exp2 = (ulong *) flint_malloc(N*poly2->length*sizeof(ulong)); mpoly_repack_monomials(exp2, exp_bits, poly2->exps, poly2->bits, poly2->length, ctx->minfo); } for (i = 0; i < len; i++) { exp3[i] = poly3[i]->exps; free3[i] = 0; if (exp_bits > poly3[i]->bits) { free3[i] = 1; exp3[i] = (ulong *) flint_malloc(N*poly3[i]->length*sizeof(ulong)); mpoly_repack_monomials(exp3[i], exp_bits, poly3[i]->exps, poly3[i]->bits, poly3[i]->length, ctx->minfo); } fmpz_mpoly_fit_length(q[i], 1, ctx); fmpz_mpoly_fit_bits(q[i], exp_bits, ctx); q[i]->bits = exp_bits; } /* check leading mon. of at least one divisor is at most that of dividend */ for (i = 0; i < len; i++) { if (!mpoly_monomial_lt(exp2, exp3[i], N, cmpmask)) break; } if (i == len) { fmpz_mpoly_set(r, poly2, ctx); for (i = 0; i < len; i++) fmpz_mpoly_zero(q[i], ctx); goto cleanup3; } /* take care of aliasing */ if (r == poly2) { fmpz_mpoly_init2(temp2, len3, ctx); fmpz_mpoly_fit_bits(temp2, exp_bits, ctx); temp2->bits = exp_bits; tr = temp2; } else { fmpz_mpoly_fit_length(r, len3, ctx); fmpz_mpoly_fit_bits(r, exp_bits, ctx); r->bits = exp_bits; tr = r; } /* do division with remainder */ while (1) { slong old_exp_bits = exp_bits; ulong * old_exp2 = exp2, * old_exp3; lenr = _fmpz_mpoly_divrem_ideal_monagan_pearce(q, &tr->coeffs, &tr->exps, &tr->alloc, poly2->coeffs, exp2, poly2->length, poly3, exp3, len, N, exp_bits, ctx, cmpmask); if (lenr >= 0) /* check if division was successful */ break; exp_bits = mpoly_fix_bits(exp_bits + 1, ctx->minfo); N = mpoly_words_per_exp(exp_bits, ctx->minfo); cmpmask = (ulong *) flint_realloc(cmpmask, N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, exp_bits, ctx->minfo); exp2 = (ulong *) flint_malloc(N*poly2->length*sizeof(ulong)); mpoly_repack_monomials(exp2, exp_bits, old_exp2, old_exp_bits, poly2->length, ctx->minfo); if (free2) flint_free(old_exp2); free2 = 1; fmpz_mpoly_fit_bits(tr, exp_bits, ctx); tr->bits = exp_bits; for (i = 0; i < len; i++) { old_exp3 = exp3[i]; exp3[i] = (ulong *) flint_malloc(N*poly3[i]->length*sizeof(ulong)); mpoly_repack_monomials(exp3[i], exp_bits, old_exp3, old_exp_bits, poly3[i]->length, ctx->minfo); if (free3[i]) flint_free(old_exp3); free3[i] = 1; fmpz_mpoly_fit_bits(q[i], exp_bits, ctx); q[i]->bits = exp_bits; } } /* take care of aliasing */ if (r == poly2) { fmpz_mpoly_swap(temp2, r, ctx); fmpz_mpoly_clear(temp2, ctx); } _fmpz_mpoly_set_length(r, lenr, ctx); cleanup3: if (free2) flint_free(exp2); for (i = 0; i < len; i++) { if (free3[i]) flint_free(exp3[i]); } flint_free(cmpmask); TMP_END; }