/*
Copyright (C) 2017 Daniel Schultz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "flint.h"
#include "fmpz.h"
#include "fmpz_mpoly.h"
#include "longlong.h"
/*
Set polyq, polyr to the quotient and remainder of poly2 by poly3 (with
remainder coeffs reduced modulo the leading coeff of poly3), and return
the length of the quotient. This version of the function assumes the
exponent vectors all fit in a single word. The exponent vectors are
assumed to have fields with the given number of bits. Assumes input polys
are nonzero. Implements "Polynomial division using dynamic arrays, heaps
and packed exponents" by Michael Monagan and Roman Pearce [1], except that
we use a heap with smallest exponent at head. Note that if a < b then
(n - b) < (n - b) where n is the maximum value a and b can take. The word
"maxn" is set to an exponent vector whose fields are all set to such a
value n. This allows division from left to right with a heap with smallest
exponent at the head. Quotient and remainder polys are written in reverse
order.
[1] http://www.cecm.sfu.ca/~rpearcea/sdmp/sdmp_paper.pdf
*/
slong _fmpz_mpoly_divrem_monagan_pearce1(slong * lenr,
fmpz ** polyq, ulong ** expq, slong * allocq, fmpz ** polyr,
ulong ** expr, slong * allocr, const fmpz * poly2, const ulong * exp2,
slong len2, const fmpz * poly3, const ulong * exp3, slong len3,
slong bits, ulong maskhi)
{
slong i, j, q_len, r_len, s;
slong next_loc, heap_len = 2;
mpoly_heap1_s * heap;
mpoly_heap_t * chain;
slong * store, * store_base;
mpoly_heap_t * x;
fmpz * q_coeff = *polyq;
fmpz * r_coeff = *polyr;
ulong * q_exp = *expq;
ulong * r_exp = *expr;
slong * hind;
ulong mask, exp;
fmpz_t r, acc_lg;
ulong acc_sm[3];
int lt_divides, small;
slong bits2, bits3;
ulong lc_norm = 0, lc_abs = 0, lc_sign = 0, lc_n = 0, lc_i = 0;
TMP_INIT;
TMP_START;
fmpz_init(acc_lg);
fmpz_init(r);
/* whether intermediate computations q - a*b will fit in three words */
bits2 = _fmpz_vec_max_bits(poly2, len2);
bits3 = _fmpz_vec_max_bits(poly3, len3);
/* allow one bit for sign, one bit for subtraction */
small = FLINT_ABS(bits2) <= (FLINT_ABS(bits3) + FLINT_BIT_COUNT(len3) + FLINT_BITS - 2)
&& FLINT_ABS(bits3) <= FLINT_BITS - 2;
/* alloc array of heap nodes which can be chained together */
next_loc = len3 + 4; /* something bigger than heap can ever be */
heap = (mpoly_heap1_s *) TMP_ALLOC((len3 + 1)*sizeof(mpoly_heap1_s));
chain = (mpoly_heap_t *) TMP_ALLOC(len3*sizeof(mpoly_heap_t));
store = store_base = (slong *) TMP_ALLOC(2*len3*sizeof(slong));
/* space for flagged heap indicies */
hind = (slong *) TMP_ALLOC(len3*sizeof(slong));
for (i = 0; i < len3; i++)
hind[i] = 1;
mask = mpoly_overflow_mask_sp(bits);
/* quotient and remainder poly indices start at -1 */
q_len = WORD(0);
r_len = WORD(0);
/* s is the number of terms * (latest quotient) we should put into heap */
s = len3;
/* insert (-1, 0, exp2[0]) into heap */
x = chain + 0;
x->i = -WORD(1);
x->j = 0;
x->next = NULL;
HEAP_ASSIGN(heap[1], exp2[0], x);
/* precompute leading cofficient info in "small" case */
if (small)
{
lc_abs = FLINT_ABS(poly3[0]);
lc_sign = FLINT_SIGN_EXT(poly3[0]);
count_leading_zeros(lc_norm, lc_abs);
lc_n = lc_abs << lc_norm;
invert_limb(lc_i, lc_n);
}
while (heap_len > 1)
{
exp = heap[1].exp;
if (mpoly_monomial_overflows1(exp, mask))
goto exp_overflow;
_fmpz_mpoly_fit_length(&q_coeff, &q_exp, allocq, q_len + 1, 1);
lt_divides = mpoly_monomial_divides1(q_exp + q_len, exp, exp3[0], mask);
/* take nodes from heap with exponent matching exp */
if (small)
{
acc_sm[0] = acc_sm[1] = acc_sm[2] = 0;
do
{
x = _mpoly_heap_pop1(heap, &heap_len, maskhi);
do
{
*store++ = x->i;
*store++ = x->j;
if (x->i != -WORD(1))
hind[x->i] |= WORD(1);
if (x->i == -WORD(1))
_fmpz_mpoly_add_uiuiui_fmpz(acc_sm, poly2 + x->j);
else
_fmpz_mpoly_submul_uiuiui_fmpz(acc_sm, poly3[x->i], q_coeff[x->j]);
} while ((x = x->next) != NULL);
} while (heap_len > 1 && heap[1].exp == exp);
} else
{
fmpz_zero(acc_lg);
do
{
x = _mpoly_heap_pop1(heap, &heap_len, maskhi);
do
{
*store++ = x->i;
*store++ = x->j;
if (x->i != -WORD(1))
hind[x->i] |= WORD(1);
if (x->i == -WORD(1))
fmpz_add(acc_lg, acc_lg, poly2 + x->j);
else
fmpz_submul(acc_lg, poly3 + x->i, q_coeff + x->j);
} while ((x = x->next) != NULL);
} while (heap_len > 1 && heap[1].exp == exp);
}
/* process nodes taken from the heap */
while (store > store_base)
{
j = *--store;
i = *--store;
if (i == -WORD(1))
{
/* take next dividend term */
if (j + 1 < len2)
{
x = chain + 0;
x->i = i;
x->j = j + 1;
x->next = NULL;
_mpoly_heap_insert1(heap, exp2[x->j], x,
&next_loc, &heap_len, maskhi);
}
} else
{
/* should we go right? */
if ( (i + 1 < len3)
&& (hind[i + 1] == 2*j + 1)
)
{
x = chain + i + 1;
x->i = i + 1;
x->j = j;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
_mpoly_heap_insert1(heap, exp3[x->i] + q_exp[x->j], x,
&next_loc, &heap_len, maskhi);
}
/* should we go up? */
if (j + 1 == q_len)
{
s++;
} else if ( ((hind[i] & 1) == 1)
&& ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1))
)
{
x = chain + i;
x->i = i;
x->j = j + 1;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
_mpoly_heap_insert1(heap, exp3[x->i] + q_exp[x->j], x,
&next_loc, &heap_len, maskhi);
}
}
}
/* try to divide accumulated term by leading term */
if (small)
{
ulong d0, d1, ds = acc_sm[2];
/* d1:d0 = abs(acc_sm[1:0]) assuming ds is sign extension of acc_sm[1] */
sub_ddmmss(d1, d0, acc_sm[1]^ds, acc_sm[0]^ds, ds, ds);
if ((acc_sm[0] | acc_sm[1] | acc_sm[2]) == 0)
{
continue;
}
if (!lt_divides)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, 1);
fmpz_set_signed_uiuiui(r_coeff + r_len, acc_sm[2], acc_sm[1], acc_sm[0]);
r_exp[r_len] = exp;
r_len++;
continue;
}
if (ds == FLINT_SIGN_EXT(acc_sm[1]) && d1 < lc_abs)
{
ulong qq, rr, nhi, nlo;
FLINT_ASSERT(0 < lc_norm && lc_norm < FLINT_BITS);
nhi = (d1 << lc_norm) | (d0 >> (FLINT_BITS - lc_norm));
nlo = d0 << lc_norm;
udiv_qrnnd_preinv(qq, rr, nhi, nlo, lc_n, lc_i);
rr = rr >> lc_norm;
if (rr != 0)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, 1);
if (ds == 0)
fmpz_set_si(r_coeff + r_len, rr);
else
fmpz_neg_ui(r_coeff + r_len, rr);
r_exp[r_len] = exp;
r_len++;
}
if (qq == 0)
continue;
if (qq <= COEFF_MAX)
{
_fmpz_demote(q_coeff + q_len);
q_coeff[q_len] = qq;
if (ds != lc_sign)
q_coeff[q_len] = -q_coeff[q_len];
}
else
{
small = 0;
fmpz_set_ui(q_coeff + q_len, qq);
if (ds != lc_sign)
fmpz_neg(q_coeff + q_len, q_coeff + q_len);
}
}
else
{
small = 0;
fmpz_set_signed_uiuiui(acc_lg, acc_sm[2], acc_sm[1], acc_sm[0]);
goto large_lt_divides;
}
}
else
{
if (fmpz_is_zero(acc_lg))
{
continue;
}
if (!lt_divides)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, 1);
fmpz_set(r_coeff + r_len, acc_lg);
r_exp[r_len] = exp;
r_len++;
continue;
}
large_lt_divides:
fmpz_fdiv_qr(q_coeff + q_len, r, acc_lg, poly3 + 0);
if (!fmpz_is_zero(r))
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, 1);
fmpz_set(r_coeff + r_len, r);
r_exp[r_len] = exp;
r_len++;
}
if (fmpz_is_zero(q_coeff + q_len))
{
continue;
}
}
/* put newly generated quotient term back into the heap if neccesary */
if (s > 1)
{
i = 1;
x = chain + i;
x->i = i;
x->j = q_len;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
_mpoly_heap_insert1(heap, exp3[x->i] + q_exp[x->j], x,
&next_loc, &heap_len, maskhi);
}
s = 1;
q_len++;
}
cleanup:
fmpz_clear(acc_lg);
fmpz_clear(r);
(*polyq) = q_coeff;
(*expq) = q_exp;
(*polyr) = r_coeff;
(*expr) = r_exp;
/* set remainder poly length */
(*lenr) = r_len;
TMP_END;
return q_len;
exp_overflow:
for (i = 0; i < q_len; i++)
_fmpz_demote(q_coeff + i);
for (i = 0; i < r_len; i++)
_fmpz_demote(r_coeff + i);
q_len = 0;
r_len = 0;
goto cleanup;
}
slong _fmpz_mpoly_divrem_monagan_pearce(slong * lenr,
fmpz ** polyq, ulong ** expq, slong * allocq, fmpz ** polyr,
ulong ** expr, slong * allocr, const fmpz * poly2,
const ulong * exp2, slong len2, const fmpz * poly3, const ulong * exp3,
slong len3, slong bits, slong N, const ulong * cmpmask)
{
slong i, j, q_len, r_len, s;
slong next_loc;
slong heap_len = 2; /* heap zero index unused */
mpoly_heap_s * heap;
mpoly_heap_t * chain;
slong * store, * store_base;
mpoly_heap_t * x;
fmpz * q_coeff = *polyq;
fmpz * r_coeff = *polyr;
ulong * q_exp = *expq;
ulong * r_exp = *expr;
ulong * exp, * exps;
ulong ** exp_list;
slong exp_next;
ulong mask;
fmpz_t r, acc_lg;
ulong acc_sm[3];
slong * hind;
int lt_divides, small;
slong bits2, bits3;
ulong lc_norm = 0, lc_abs = 0, lc_sign = 0, lc_n = 0, lc_i = 0;
TMP_INIT;
if (N == 1)
return _fmpz_mpoly_divrem_monagan_pearce1(lenr, polyq, expq, allocq,
polyr, expr, allocr, poly2, exp2, len2,
poly3, exp3, len3, bits, cmpmask[0]);
TMP_START;
fmpz_init(acc_lg);
fmpz_init(r);
/* whether intermediate computations q - a*b will fit in three words */
bits2 = _fmpz_vec_max_bits(poly2, len2);
bits3 = _fmpz_vec_max_bits(poly3, len3);
/* allow one bit for sign, one bit for subtraction */
small = FLINT_ABS(bits2) <= (FLINT_ABS(bits3) + FLINT_BIT_COUNT(len3) + FLINT_BITS - 2)
&& FLINT_ABS(bits3) <= FLINT_BITS - 2;
/* alloc array of heap nodes which can be chained together */
next_loc = len3 + 4; /* something bigger than heap can ever be */
heap = (mpoly_heap_s *) TMP_ALLOC((len3 + 1)*sizeof(mpoly_heap_s));
chain = (mpoly_heap_t *) TMP_ALLOC(len3*sizeof(mpoly_heap_t));
store = store_base = (slong *) TMP_ALLOC(2*len3*sizeof(slong));
/* array of exponent vectors, each of "N" words */
exps = (ulong *) TMP_ALLOC(len3*N*sizeof(ulong));
/* list of pointers to available exponent vectors */
exp_list = (ulong **) TMP_ALLOC(len3*sizeof(ulong *));
/* space to save copy of current exponent vector */
exp = (ulong *) TMP_ALLOC(N*sizeof(ulong));
/* set up list of available exponent vectors */
exp_next = 0;
for (i = 0; i < len3; i++)
exp_list[i] = exps + i*N;
/* space for flagged heap indicies */
hind = (slong *) TMP_ALLOC(len3*sizeof(slong));
for (i = 0; i < len3; i++)
hind[i] = 1;
mask = bits <= FLINT_BITS ? mpoly_overflow_mask_sp(bits) : 0;
/* quotient and remainder poly indices start at -1 */
q_len = WORD(0);
r_len = WORD(0);
/* s is the number of terms * (latest quotient) we should put into heap */
s = len3;
/* insert (-1, 0, exp2[0]) into heap */
x = chain + 0;
x->i = -WORD(1);
x->j = 0;
x->next = NULL;
heap[1].next = x;
heap[1].exp = exp_list[exp_next++];
mpoly_monomial_set(heap[1].exp, exp2, N);
/* precompute leading cofficient info in "small" case */
if (small)
{
lc_abs = FLINT_ABS(poly3[0]);
lc_sign = FLINT_SIGN_EXT(poly3[0]);
count_leading_zeros(lc_norm, lc_abs);
lc_n = lc_abs << lc_norm;
invert_limb(lc_i, lc_n);
}
while (heap_len > 1)
{
mpoly_monomial_set(exp, heap[1].exp, N);
if (bits <= FLINT_BITS)
{
if (mpoly_monomial_overflows(exp, N, mask))
goto exp_overflow2;
}
else
{
if (mpoly_monomial_overflows_mp(exp, N, bits))
goto exp_overflow2;
}
_fmpz_mpoly_fit_length(&q_coeff, &q_exp, allocq, q_len + 1, N);
if (bits <= FLINT_BITS)
lt_divides = mpoly_monomial_divides(q_exp + q_len*N, exp, exp3, N, mask);
else
lt_divides = mpoly_monomial_divides_mp(q_exp + q_len*N, exp, exp3, N, bits);
/* take nodes from heap with exponent matching exp */
if (small)
{
acc_sm[0] = acc_sm[1] = acc_sm[2] = 0;
do
{
exp_list[--exp_next] = heap[1].exp;
x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask);
do
{
*store++ = x->i;
*store++ = x->j;
if (x->i != -WORD(1))
hind[x->i] |= WORD(1);
if (x->i == -WORD(1))
_fmpz_mpoly_add_uiuiui_fmpz(acc_sm, poly2 + x->j);
else
_fmpz_mpoly_submul_uiuiui_fmpz(acc_sm, poly3[x->i], q_coeff[x->j]);
} while ((x = x->next) != NULL);
} while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N));
} else
{
fmpz_zero(acc_lg);
do
{
exp_list[--exp_next] = heap[1].exp;
x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask);
do
{
*store++ = x->i;
*store++ = x->j;
if (x->i != -WORD(1))
hind[x->i] |= WORD(1);
if (x->i == -WORD(1))
fmpz_add(acc_lg, acc_lg, poly2 + x->j);
else
fmpz_submul(acc_lg, poly3 + x->i, q_coeff + x->j);
} while ((x = x->next) != NULL);
} while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N));
}
/* process nodes taken from the heap */
while (store > store_base)
{
j = *--store;
i = *--store;
if (i == -WORD(1))
{
/* take next dividend term */
if (j + 1 < len2)
{
x = chain + 0;
x->i = i;
x->j = j + 1;
x->next = NULL;
mpoly_monomial_set(exp_list[exp_next], exp2 + x->j*N, N);
exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x,
&next_loc, &heap_len, N, cmpmask);
}
} else
{
/* should we go right? */
if ( (i + 1 < len3)
&& (hind[i + 1] == 2*j + 1)
)
{
x = chain + i + 1;
x->i = i + 1;
x->j = j;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
if (bits <= FLINT_BITS)
mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
else
mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x,
&next_loc, &heap_len, N, cmpmask);
}
/* should we go up? */
if (j + 1 == q_len)
{
s++;
} else if ( ((hind[i] & 1) == 1)
&& ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1))
)
{
x = chain + i;
x->i = i;
x->j = j + 1;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
if (bits <= FLINT_BITS)
mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
else
mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x,
&next_loc, &heap_len, N, cmpmask);
}
}
}
/* try to divide accumulated term by leading term */
if (small)
{
ulong d0, d1, ds = acc_sm[2];
/* d1:d0 = abs(acc_sm[1:0]) assuming ds is sign extension of acc_sm[1] */
sub_ddmmss(d1, d0, acc_sm[1]^ds, acc_sm[0]^ds, ds, ds);
if ((acc_sm[0] | acc_sm[1] | acc_sm[2]) == 0)
{
continue;
}
if (!lt_divides)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, N);
fmpz_set_signed_uiuiui(r_coeff + r_len, acc_sm[2], acc_sm[1], acc_sm[0]);
mpoly_monomial_set(r_exp + r_len*N, exp, N);
r_len++;
continue;
}
if (ds == FLINT_SIGN_EXT(acc_sm[1]) && d1 < lc_abs)
{
ulong qq, rr, nhi, nlo;
FLINT_ASSERT(0 < lc_norm && lc_norm < FLINT_BITS);
nhi = (d1 << lc_norm) | (d0 >> (FLINT_BITS - lc_norm));
nlo = d0 << lc_norm;
udiv_qrnnd_preinv(qq, rr, nhi, nlo, lc_n, lc_i);
rr = rr >> lc_norm;
if (rr != 0)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, N);
if (ds == 0)
fmpz_set_ui(r_coeff + r_len, rr);
else
fmpz_neg_ui(r_coeff + r_len, rr);
mpoly_monomial_set(r_exp + r_len*N, exp, N);
r_len++;
}
if (qq == 0)
continue;
if (qq <= COEFF_MAX)
{
_fmpz_demote(q_coeff + q_len);
q_coeff[q_len] = qq;
if (ds != lc_sign)
q_coeff[q_len] = -q_coeff[q_len];
}
else
{
small = 0;
fmpz_set_ui(q_coeff + q_len, qq);
if (ds != lc_sign)
fmpz_neg(q_coeff + q_len, q_coeff + q_len);
}
}
else
{
small = 0;
fmpz_set_signed_uiuiui(acc_lg, acc_sm[2], acc_sm[1], acc_sm[0]);
goto large_lt_divides;
}
}
else
{
if (fmpz_is_zero(acc_lg))
{
continue;
}
if (!lt_divides)
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, N);
fmpz_set(r_coeff + r_len, acc_lg);
mpoly_monomial_set(r_exp + r_len*N, exp, N);
r_len++;
continue;
}
large_lt_divides:
fmpz_fdiv_qr(q_coeff + q_len, r, acc_lg, poly3 + 0);
if (!fmpz_is_zero(r))
{
_fmpz_mpoly_fit_length(&r_coeff, &r_exp, allocr, r_len + 1, N);
fmpz_set(r_coeff + r_len, r);
mpoly_monomial_set(r_exp + r_len*N, exp, N);
r_len++;
}
if (fmpz_is_zero(q_coeff + q_len))
{
continue;
}
}
/* put newly generated quotient term back into the heap if neccesary */
if (s > 1)
{
i = 1;
x = chain + i;
x->i = i;
x->j = q_len;
x->next = NULL;
hind[x->i] = 2*(x->j + 1) + 0;
if (bits <= FLINT_BITS)
mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
else
mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N,
q_exp + x->j*N, N);
exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x,
&next_loc, &heap_len, N, cmpmask);
}
s = 1;
q_len++;
}
cleanup2:
fmpz_clear(acc_lg);
fmpz_clear(r);
(*polyq) = q_coeff;
(*expq) = q_exp;
(*polyr) = r_coeff;
(*expr) = r_exp;
(*lenr) = r_len;
TMP_END;
return q_len;
exp_overflow2:
for (i = 0; i < q_len; i++)
_fmpz_demote(q_coeff + i);
for (i = 0; i < r_len; i++)
_fmpz_demote(r_coeff + i);
q_len = 0;
r_len = 0;
goto cleanup2;
}
void fmpz_mpoly_divrem_monagan_pearce(fmpz_mpoly_t q, fmpz_mpoly_t r,
const fmpz_mpoly_t poly2, const fmpz_mpoly_t poly3,
const fmpz_mpoly_ctx_t ctx)
{
slong exp_bits, N, lenq = 0, lenr = 0;
ulong * exp2 = poly2->exps, * exp3 = poly3->exps;
ulong * cmpmask;
int free2 = 0, free3 = 0;
fmpz_mpoly_t temp1, temp2;
fmpz_mpoly_struct * tq, * tr;
/* check divisor is nonzero */
if (poly3->length == 0)
flint_throw(FLINT_DIVZERO, "Divide by zero in fmpz_mpoly_divrem_monagan_pearce");
/* dividend zero, write out quotient and remainder */
if (poly2->length == 0)
{
fmpz_mpoly_zero(q, ctx);
fmpz_mpoly_zero(r, ctx);
return;
}
exp_bits = FLINT_MAX(poly2->bits, poly3->bits);
exp_bits = mpoly_fix_bits(exp_bits, ctx->minfo);
N = mpoly_words_per_exp(exp_bits, ctx->minfo);
cmpmask = (ulong *) flint_malloc(N*sizeof(ulong));
mpoly_get_cmpmask(cmpmask, N, exp_bits, ctx->minfo);
/* ensure input exponents packed to same size as output exponents */
if (exp_bits > poly2->bits)
{
free2 = 1;
exp2 = (ulong *) flint_malloc(N*poly2->length*sizeof(ulong));
mpoly_repack_monomials(exp2, exp_bits, poly2->exps, poly2->bits,
poly2->length, ctx->minfo);
}
if (exp_bits > poly3->bits)
{
free3 = 1;
exp3 = (ulong *) flint_malloc(N*poly3->length*sizeof(ulong));
mpoly_repack_monomials(exp3, exp_bits, poly3->exps, poly3->bits,
poly3->length, ctx->minfo);
}
/* check divisor leading monomial is at most that of the dividend */
if (mpoly_monomial_lt(exp2, exp3, N, cmpmask))
{
fmpz_mpoly_set(r, poly2, ctx);
fmpz_mpoly_zero(q, ctx);
goto cleanup3;
}
/* take care of aliasing */
if (q == poly2 || q == poly3)
{
fmpz_mpoly_init2(temp1, poly2->length/poly3->length + 1, ctx);
fmpz_mpoly_fit_bits(temp1, exp_bits, ctx);
temp1->bits = exp_bits;
tq = temp1;
} else
{
fmpz_mpoly_fit_length(q, poly2->length/poly3->length + 1, ctx);
fmpz_mpoly_fit_bits(q, exp_bits, ctx);
q->bits = exp_bits;
tq = q;
}
if (r == poly2 || r == poly3)
{
fmpz_mpoly_init2(temp2, poly3->length, ctx);
fmpz_mpoly_fit_bits(temp2, exp_bits, ctx);
temp2->bits = exp_bits;
tr = temp2;
} else
{
fmpz_mpoly_fit_length(r, poly3->length, ctx);
fmpz_mpoly_fit_bits(r, exp_bits, ctx);
r->bits = exp_bits;
tr = r;
}
/* do division with remainder */
while ((lenq = _fmpz_mpoly_divrem_monagan_pearce(&lenr, &tq->coeffs, &tq->exps,
&tq->alloc, &tr->coeffs, &tr->exps, &tr->alloc, poly2->coeffs, exp2,
poly2->length, poly3->coeffs, exp3, poly3->length, exp_bits,
N, cmpmask)) == 0
&& lenr == 0)
{
ulong * old_exp2 = exp2, * old_exp3 = exp3;
slong old_exp_bits = exp_bits;
exp_bits = mpoly_fix_bits(exp_bits + 1, ctx->minfo);
N = mpoly_words_per_exp(exp_bits, ctx->minfo);
cmpmask = (ulong *) flint_realloc(cmpmask, N*sizeof(ulong));
mpoly_get_cmpmask(cmpmask, N, exp_bits, ctx->minfo);
exp2 = (ulong *) flint_malloc(N*poly2->length*sizeof(ulong));
mpoly_repack_monomials(exp2, exp_bits, old_exp2, old_exp_bits,
poly2->length, ctx->minfo);
exp3 = (ulong *) flint_malloc(N*poly3->length*sizeof(ulong));
mpoly_repack_monomials(exp3, exp_bits, old_exp3, old_exp_bits,
poly3->length, ctx->minfo);
if (free2)
flint_free(old_exp2);
if (free3)
flint_free(old_exp3);
free2 = free3 = 1;
fmpz_mpoly_fit_bits(tq, exp_bits, ctx);
tq->bits = exp_bits;
fmpz_mpoly_fit_bits(tr, exp_bits, ctx);
tr->bits = exp_bits;
}
/* deal with aliasing */
if (q == poly2 || q == poly3)
{
fmpz_mpoly_swap(temp1, q, ctx);
fmpz_mpoly_clear(temp1, ctx);
}
if (r == poly2 || r == poly3)
{
fmpz_mpoly_swap(temp2, r, ctx);
fmpz_mpoly_clear(temp2, ctx);
}
_fmpz_mpoly_set_length(q, lenq, ctx);
_fmpz_mpoly_set_length(r, lenr, ctx);
cleanup3:
if (free2)
flint_free(exp2);
if (free3)
flint_free(exp3);
flint_free(cmpmask);
}