/*
Copyright 2019 Daniel Schultz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
/* usage
likwid-setFrequencies -c S0 -g powersave
likwid-setFrequencies -g performance
make profile MOD=fmpz_mpoly && ./build/fmpz_mpoly/profile/p-gcd 4 sparse 7 5 4 8
p-gcd nthreads sparse m1 n1 m2 n2:
run the sparse benchmark on nthreads with powers (m1, n1) and (m2, n2)
*/
#include
#include
#include "profiler.h"
#include "fmpz_mpoly.h"
#define CALCULATE_MACHINE_EFFICIENCY 0
int * cpu_affinities;
#if CALCULATE_MACHINE_EFFICIENCY
typedef struct _worker_arg_struct
{
fmpz_mpoly_t G;
const fmpz_mpoly_struct * A, * B;
const fmpz_mpoly_ctx_struct * ctx;
} worker_arg_struct;
typedef worker_arg_struct worker_arg_t[1];
static void worker_gcd(void * varg)
{
worker_arg_struct * W = (worker_arg_struct *) varg;
fmpz_mpoly_gcd_threaded(W->G, W->A, W->B, W->ctx, 1);
}
#endif
void profile_gcd(
const fmpz_mpoly_t realG,
const fmpz_mpoly_t A,
const fmpz_mpoly_t B,
const fmpz_mpoly_ctx_t ctx,
slong max_threads)
{
fmpz_mpoly_t G;
timeit_t timer;
slong num_threads;
slong serial_time;
flint_set_num_threads(1);
flint_set_thread_affinity(cpu_affinities, 1);
fmpz_mpoly_init(G, ctx);
timeit_start(timer);
fmpz_mpoly_gcd(G, A, B, ctx);
timeit_stop(timer);
serial_time = FLINT_MAX(WORD(1), timer->wall);
flint_printf("serial time: %wd\n", serial_time);
if (!fmpz_mpoly_equal(G, realG, ctx))
{
printf("gcd wrong\n");
flint_abort();
}
for (num_threads = 2; num_threads <= max_threads; num_threads++)
{
slong parallel_time;
double parallel_efficiency;
#if CALCULATE_MACHINE_EFFICIENCY
thread_pool_handle * handles;
worker_arg_struct * worker_args;
slong i;
double machine_efficiency;
slong num_workers;
#endif
flint_set_num_threads(num_threads);
flint_set_thread_affinity(cpu_affinities, num_threads);
#if CALCULATE_MACHINE_EFFICIENCY
handles = (thread_pool_handle *) flint_malloc((num_threads - 1)*sizeof(thread_pool_handle));
num_workers = thread_pool_request(global_thread_pool, handles, num_threads - 1);
worker_args = (worker_arg_struct *) flint_malloc((num_workers + 1)*sizeof(worker_arg_t));
timeit_start(timer);
for (i = 0; i <= num_workers; i++)
{
fmpz_mpoly_init((worker_args + i)->G, ctx);
(worker_args + i)->A = A;
(worker_args + i)->B = B;
(worker_args + i)->ctx = ctx;
if (i < num_workers)
{
thread_pool_wake(global_thread_pool, handles[i], 0, worker_gcd, worker_args + i);
}
else
{
worker_gcd(worker_args + i);
}
}
for (i = 0; i < num_workers; i++)
{
thread_pool_wait(global_thread_pool, handles[i]);
}
timeit_stop(timer);
parallel_time = FLINT_MAX(WORD(1), timer->wall);
for (i = 0; i <= num_workers; i++)
{
if (!fmpz_mpoly_equal((worker_args + i)->G, realG, ctx))
{
printf("gcd wrong\n");
flint_abort();
}
fmpz_mpoly_clear((worker_args + i)->G, ctx);
if (i < num_workers)
{
thread_pool_give_back(global_thread_pool, handles[i]);
}
}
flint_free(worker_args);
flint_free(handles);
machine_efficiency = (double)(serial_time)/(double)(parallel_time);
#endif
fmpz_mpoly_clear(G, ctx);
fmpz_mpoly_init(G, ctx);
timeit_start(timer);
fmpz_mpoly_gcd(G, A, B, ctx);
timeit_stop(timer);
parallel_time = FLINT_MAX(WORD(1), timer->wall);
if (!fmpz_mpoly_equal(G, realG, ctx))
{
printf("gcd wrong\n");
flint_abort();
}
parallel_efficiency = (double)(serial_time)/(double)(parallel_time)/(double)(num_threads);
#if CALCULATE_MACHINE_EFFICIENCY
flint_printf("parallel %wd time: %wd, efficiency %f (machine %f)\n", num_threads, parallel_time, parallel_efficiency, machine_efficiency);
#else
flint_printf("parallel %wd time: %wd, efficiency %f\n", num_threads, parallel_time, parallel_efficiency);
#endif
}
fmpz_mpoly_clear(G, ctx);
}
void profile_power(const char * astr, const char * bstr, slong nvars,
const char * name, slong m1, slong n1, slong m2, slong n2, slong max_threads)
{
fmpz_mpoly_ctx_t ctx;
fmpz_mpoly_t a, b, t, A, B, G;
const char * vars[] = {"x", "y", "z", "t", "u", "v" , "w"};
FLINT_ASSERT(nvars <= 7);
fmpz_mpoly_ctx_init(ctx, nvars, ORD_LEX);
fmpz_mpoly_init(a, ctx);
fmpz_mpoly_init(b, ctx);
fmpz_mpoly_init(t, ctx);
fmpz_mpoly_init(A, ctx);
fmpz_mpoly_init(B, ctx);
fmpz_mpoly_init(G, ctx);
fmpz_mpoly_set_str_pretty(a, astr, vars, ctx);
fmpz_mpoly_set_str_pretty(b, bstr, vars, ctx);
fmpz_mpoly_pow_ui(A, a, m1, ctx);
fmpz_mpoly_pow_ui(t, b, n1, ctx);
fmpz_mpoly_mul(A, A, t, ctx);
fmpz_mpoly_pow_ui(B, a, m2, ctx);
fmpz_mpoly_pow_ui(t, b, n2, ctx);
fmpz_mpoly_mul(B, B, t, ctx);
fmpz_mpoly_pow_ui(G, a, FLINT_MIN(m1, m2), ctx);
fmpz_mpoly_pow_ui(t, b, FLINT_MIN(n1, n2), ctx);
fmpz_mpoly_mul(G, G, t, ctx);
if (fmpz_sgn(G->coeffs + 0) < 0)
fmpz_mpoly_neg(G, G, ctx);
flint_printf("starting %s gcd (%wu, %wd), (%wd, %wd):\n", name, m1, n1, m2, n2);
profile_gcd(G, A, B, ctx, max_threads);
fmpz_mpoly_clear(G, ctx);
fmpz_mpoly_clear(B, ctx);
fmpz_mpoly_clear(A, ctx);
fmpz_mpoly_clear(t, ctx);
fmpz_mpoly_clear(b, ctx);
fmpz_mpoly_clear(a, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
int main(int argc, char *argv[])
{
slong i, m1, n1, m2, n2, max_threads;
const slong thread_limit = 64;
const char * name;
cpu_affinities = flint_malloc(thread_limit*sizeof(int));
for (i = 0; i < thread_limit; i++)
cpu_affinities[i] = i;
if (argc == 7)
{
max_threads = atoi(argv[1]);
max_threads = FLINT_MIN(max_threads, thread_limit);
max_threads = FLINT_MAX(max_threads, WORD(1));
name = argv[2];
m1 = atoi(argv[3]);
n1 = atoi(argv[4]);
m2 = atoi(argv[5]);
n2 = atoi(argv[6]);
}
else
{
printf(" usage: p-gcd nthreads sparse m1 n1 m2 n2\n");
printf("running: p-gcd 4 sparse 7 5 4 8 \n");
max_threads = 4;
name = "sparse";
m1 = 7;
n1 = 5;
m2 = 4;
n2 = 8;
}
flint_printf("setting up fmpz_mpoly %s gcd ... ", name);
if (strcmp(name, "dense2") == 0)
{
profile_power("1 + x + 2*y + x*y",
"1 + 2*x + y + x*y", 2, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "semisparse2") == 0)
{
profile_power("1 + x + 2*y",
"1 + x + y", 2, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "dense3") == 0)
{
profile_power("1 + x + y + z + x*y + x*z",
"1 + x + y + z + y*z + y*z", 3, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "semisparse3") == 0)
{
profile_power("1 + 2*x + 3*y - z",
"1 + x + y + z", 3, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "sparse3") == 0)
{
profile_power("1 + x^2 + y^20 + z^33",
"1 + x^21 + y^11 + z^7", 3, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "semisparse4") == 0)
{
profile_power("1 + 2*x + 3*y - z - 2*t",
"1 + x + y + z + t", 4, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "boldsparse4") == 0)
{
profile_power("1 + x + y^2 + z^3 + t^4",
"1 + x^4 + y^3 + z^2 + t", 4, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "semisparse5") == 0)
{
profile_power("1 + 2*x + 3*y - z - 2*t - 3*u",
"1 + x + y + z + t + u", 5, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "boldsparse5") == 0)
{
profile_power("1 + x^1 + y^2 + z^3 + t^4 + u^5",
"1 + x^5 + y^4 + z^3 + t^2 + u^1", 5, name, m1, n1, m2, n2, max_threads);
}
else if (strcmp(name, "heavysparse5") == 0)
{
profile_power("1 + x^1 + y^2 + z^6 + t^4 + u^9",
"1 + x^9 + y^4 + z^3 + t^7 + u^1", 5, name, m1, n1, m2, n2, max_threads);
}
else
{
profile_power("1 + x^1 + y^5 + z^4 + t^40 + u^50",
"1 + x^9 + y^2 + z^11 + t^7 + u^27", 5, "sparse", m1, n1, m2, n2, max_threads);
}
flint_free(cpu_affinities);
flint_cleanup_master();
return 0;
}