/*
Copyright (C) 2017, 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "fmpz_mpoly.h"
int
main(void)
{
slong i, j, tmul = 10;
FLINT_TEST_INIT(state);
flint_printf("sqrt_heap....");
fflush(stdout);
{
fmpz_mpoly_t f, g, p, q;
fmpz_mpoly_ctx_t ctx;
const char * vars[] = {"x", "y", "z", "t", "u"};
int sqr;
fmpz_mpoly_ctx_init(ctx, 5, ORD_LEX);
fmpz_mpoly_init(f, ctx);
fmpz_mpoly_init(g, ctx);
fmpz_mpoly_init(p, ctx);
fmpz_mpoly_init(q, ctx);
fmpz_mpoly_set_str_pretty(f, "(1+x+y+2*z^2+3*t^3+5*u^5)^6", vars, ctx);
fmpz_mpoly_mul(p, f, f, ctx);
fmpz_mpoly_assert_canonical(p, ctx);
sqr = fmpz_mpoly_sqrt_heap(q, p, ctx, 1);
fmpz_mpoly_assert_canonical(q, ctx);
if (!sqr)
{
flint_printf("FAIL\n");
flint_printf("Check example1: sqr\n");
flint_abort();
}
fmpz_mpoly_mul(g, q, q, ctx);
if (!fmpz_mpoly_equal(p, g, ctx))
{
flint_printf("FAIL\n");
flint_printf("Check example1\n");
flint_abort();
}
/* D Coppersmith, J Davenport, Polynomials whose powers are sparse */
fmpz_mpoly_set_str_pretty(f, "(1+2*x-2*x^2+4*x^3-10*x^4+50*x^5+125*x^6)*(-1+110*x^6)", vars, ctx);
fmpz_mpoly_mul(p, f, f, ctx);
sqr = fmpz_mpoly_sqrt_heap(q, p, ctx, 1);
fmpz_mpoly_assert_canonical(q, ctx);
if (!sqr || !fmpz_mpoly_equal(q, f, ctx))
{
flint_printf("FAIL\n");
flint_printf("Check example 2\n");
flint_abort();
}
fmpz_mpoly_clear(f, ctx);
fmpz_mpoly_clear(g, ctx);
fmpz_mpoly_clear(p, ctx);
fmpz_mpoly_clear(q, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
/* Check sqrt(f^2) = +-f */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
fmpz_mpoly_ctx_t ctx;
fmpz_mpoly_t f, g, h, k;
slong len, len1;
flint_bitcnt_t exp_bits, exp_bits1;
flint_bitcnt_t coeff_bits, coeff_bits1;
int sqr;
fmpz_mpoly_ctx_init_rand(ctx, state, 10);
fmpz_mpoly_init(f, ctx);
fmpz_mpoly_init(g, ctx);
fmpz_mpoly_init(h, ctx);
fmpz_mpoly_init(k, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
exp_bits = n_randint(state, 200) + 1;
exp_bits1 = n_randint(state, 200) + 1;
coeff_bits = n_randint(state, 200);
coeff_bits1 = n_randint(state, 200);
for (j = 0; j < 4; j++)
{
fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx);
fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_randtest_bits(k, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_mul(g, f, f, ctx);
fmpz_mpoly_assert_canonical(g, ctx);
if (f->length > 0 && fmpz_sgn(f->coeffs + 0) < 0)
fmpz_mpoly_neg(f, f, ctx);
sqr = fmpz_mpoly_sqrt_heap(h, g, ctx, 1);
fmpz_mpoly_assert_canonical(h, ctx);
if (!sqr)
{
printf("FAIL\n");
flint_printf("Check sqrt(f^2) returns 1\n");
flint_abort();
}
if (!fmpz_mpoly_equal(h, f, ctx))
{
printf("FAIL\n");
flint_printf("Check sqrt(f^2) = +-f\ni = %wd, j = %wd\n", i ,j);
flint_abort();
}
sqr = fmpz_mpoly_sqrt_heap(k, g, ctx, 0);
fmpz_mpoly_assert_canonical(k, ctx);
if (!sqr)
{
printf("FAIL\n");
flint_printf("Check sqrt(f^2) returns 1: nocheck\n");
flint_abort();
}
if (!fmpz_mpoly_equal(k, f, ctx))
{
printf("FAIL\n");
flint_printf("Check sqrt(f)^2 = +-f\ni = %wd, j = %wd: nocheck\n", i ,j);
flint_abort();
}
}
fmpz_mpoly_clear(f, ctx);
fmpz_mpoly_clear(g, ctx);
fmpz_mpoly_clear(h, ctx);
fmpz_mpoly_clear(k, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
/* Check sqrt(f^2*(x^2+x)) returns 0 */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
fmpz_mpoly_ctx_t ctx;
fmpz_mpoly_t f, g, h, k, x;
slong len, len1, nvars;
flint_bitcnt_t exp_bits, exp_bits1;
flint_bitcnt_t coeff_bits, coeff_bits1;
int sqr;
fmpz_mpoly_ctx_init_rand(ctx, state, 10);
fmpz_mpoly_init(f, ctx);
fmpz_mpoly_init(g, ctx);
fmpz_mpoly_init(h, ctx);
fmpz_mpoly_init(k, ctx);
fmpz_mpoly_init(x, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100) + 1;
exp_bits = n_randint(state, 200) + 1;
exp_bits1 = n_randint(state, 200) + 1;
coeff_bits = n_randint(state, 200);
coeff_bits1 = n_randint(state, 200) + 1;
nvars = fmpz_mpoly_ctx_nvars(ctx);
for (j = 0; j < 4; j++)
{
do {
fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx);
} while (fmpz_mpoly_is_zero(f, ctx));
fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_randtest_bits(k, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_mul(g, f, f, ctx);
fmpz_mpoly_assert_canonical(g, ctx);
fmpz_mpoly_gen(x, n_randint(state, nvars), ctx);
fmpz_mpoly_mul(k, x, x, ctx);
fmpz_mpoly_add(k, k, x, ctx);
fmpz_mpoly_assert_canonical(k, ctx);
fmpz_mpoly_mul(g, g, k, ctx);
fmpz_mpoly_assert_canonical(g, ctx);
sqr = fmpz_mpoly_sqrt_heap(h, g, ctx, 1);
fmpz_mpoly_assert_canonical(h, ctx);
if (sqr)
{
printf("FAIL\n");
flint_printf("Check nonsquare returns 0\n");
flint_abort();
}
if (!fmpz_mpoly_is_zero(h, ctx))
{
printf("FAIL\n");
flint_printf("Nonsquare returns 0 sqrt\n");
flint_abort();
}
}
fmpz_mpoly_clear(f, ctx);
fmpz_mpoly_clear(g, ctx);
fmpz_mpoly_clear(h, ctx);
fmpz_mpoly_clear(k, ctx);
fmpz_mpoly_clear(x, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
/* Check sqrt(random) */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
fmpz_mpoly_ctx_t ctx;
fmpz_mpoly_t f, g;
slong len, len1;
flint_bitcnt_t exp_bits, exp_bits1;
flint_bitcnt_t coeff_bits, coeff_bits1;
int sqr;
fmpz_mpoly_ctx_init_rand(ctx, state, 10);
fmpz_mpoly_init(f, ctx);
fmpz_mpoly_init(g, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100) + 1;
exp_bits = n_randint(state, 200) + 1;
exp_bits1 = n_randint(state, 200) + 1;
coeff_bits = n_randint(state, 200);
coeff_bits1 = n_randint(state, 200) + 1;
for (j = 0; j < 4; j++)
{
fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx);
fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx);
sqr = fmpz_mpoly_sqrt_heap(g, f, ctx, 1);
fmpz_mpoly_assert_canonical(g, ctx);
if (sqr)
{
fmpz_mpoly_mul(g, g, g, ctx);
if (!fmpz_mpoly_equal(g, f, ctx))
{
flint_printf("FAIL\n");
flint_printf("Check sqrt(random)\n");
flint_abort();
}
}
else if (!fmpz_mpoly_is_zero(g, ctx))
{
flint_printf("FAIL\n");
flint_printf("Nonsquare returns 0 sqrt\n");
flint_abort();
}
}
fmpz_mpoly_clear(f, ctx);
fmpz_mpoly_clear(g, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
/* Check aliasing of square root with input */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
fmpz_mpoly_ctx_t ctx;
fmpz_mpoly_t f, g, h, k;
slong len, len1;
flint_bitcnt_t exp_bits, exp_bits1;
flint_bitcnt_t coeff_bits, coeff_bits1;
int sqr1, sqr2;
fmpz_mpoly_ctx_init_rand(ctx, state, 10);
fmpz_mpoly_init(f, ctx);
fmpz_mpoly_init(g, ctx);
fmpz_mpoly_init(h, ctx);
fmpz_mpoly_init(k, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
exp_bits = n_randint(state, 200) + 1;
exp_bits1 = n_randint(state, 200) + 1;
coeff_bits = n_randint(state, 200);
coeff_bits1 = n_randint(state, 200);
for (j = 0; j < 4; j++)
{
fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx);
fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx);
fmpz_mpoly_mul(g, f, f, ctx);
fmpz_mpoly_assert_canonical(g, ctx);
fmpz_mpoly_set(k, g, ctx);
fmpz_mpoly_assert_canonical(k, ctx);
sqr1 = fmpz_mpoly_sqrt_heap(h, g, ctx, 1);
fmpz_mpoly_assert_canonical(h, ctx);
sqr2 = fmpz_mpoly_sqrt_heap(g, g, ctx, 1);
fmpz_mpoly_assert_canonical(g, ctx);
if (sqr1 != sqr2 || !fmpz_mpoly_equal(g, h, ctx))
{
printf("FAIL\n");
flint_printf("Check aliasing\n");
flint_abort();
}
sqr2 = fmpz_mpoly_sqrt_heap(k, k, ctx, 0);
fmpz_mpoly_assert_canonical(k, ctx);
if (sqr1 != sqr2 || !fmpz_mpoly_equal(k, h, ctx))
{
printf("FAIL\n");
flint_printf("Check aliasing: nocheck\n");
flint_abort();
}
}
fmpz_mpoly_clear(f, ctx);
fmpz_mpoly_clear(g, ctx);
fmpz_mpoly_clear(h, ctx);
fmpz_mpoly_clear(k, ctx);
fmpz_mpoly_ctx_clear(ctx);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}