/* Copyright (C) 2017, 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "fmpz_mpoly.h" int main(void) { slong i, j, tmul = 10; FLINT_TEST_INIT(state); flint_printf("sqrt_heap...."); fflush(stdout); { fmpz_mpoly_t f, g, p, q; fmpz_mpoly_ctx_t ctx; const char * vars[] = {"x", "y", "z", "t", "u"}; int sqr; fmpz_mpoly_ctx_init(ctx, 5, ORD_LEX); fmpz_mpoly_init(f, ctx); fmpz_mpoly_init(g, ctx); fmpz_mpoly_init(p, ctx); fmpz_mpoly_init(q, ctx); fmpz_mpoly_set_str_pretty(f, "(1+x+y+2*z^2+3*t^3+5*u^5)^6", vars, ctx); fmpz_mpoly_mul(p, f, f, ctx); fmpz_mpoly_assert_canonical(p, ctx); sqr = fmpz_mpoly_sqrt_heap(q, p, ctx, 1); fmpz_mpoly_assert_canonical(q, ctx); if (!sqr) { flint_printf("FAIL\n"); flint_printf("Check example1: sqr\n"); flint_abort(); } fmpz_mpoly_mul(g, q, q, ctx); if (!fmpz_mpoly_equal(p, g, ctx)) { flint_printf("FAIL\n"); flint_printf("Check example1\n"); flint_abort(); } /* D Coppersmith, J Davenport, Polynomials whose powers are sparse */ fmpz_mpoly_set_str_pretty(f, "(1+2*x-2*x^2+4*x^3-10*x^4+50*x^5+125*x^6)*(-1+110*x^6)", vars, ctx); fmpz_mpoly_mul(p, f, f, ctx); sqr = fmpz_mpoly_sqrt_heap(q, p, ctx, 1); fmpz_mpoly_assert_canonical(q, ctx); if (!sqr || !fmpz_mpoly_equal(q, f, ctx)) { flint_printf("FAIL\n"); flint_printf("Check example 2\n"); flint_abort(); } fmpz_mpoly_clear(f, ctx); fmpz_mpoly_clear(g, ctx); fmpz_mpoly_clear(p, ctx); fmpz_mpoly_clear(q, ctx); fmpz_mpoly_ctx_clear(ctx); } /* Check sqrt(f^2) = +-f */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { fmpz_mpoly_ctx_t ctx; fmpz_mpoly_t f, g, h, k; slong len, len1; flint_bitcnt_t exp_bits, exp_bits1; flint_bitcnt_t coeff_bits, coeff_bits1; int sqr; fmpz_mpoly_ctx_init_rand(ctx, state, 10); fmpz_mpoly_init(f, ctx); fmpz_mpoly_init(g, ctx); fmpz_mpoly_init(h, ctx); fmpz_mpoly_init(k, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); exp_bits = n_randint(state, 200) + 1; exp_bits1 = n_randint(state, 200) + 1; coeff_bits = n_randint(state, 200); coeff_bits1 = n_randint(state, 200); for (j = 0; j < 4; j++) { fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx); fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_randtest_bits(k, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_mul(g, f, f, ctx); fmpz_mpoly_assert_canonical(g, ctx); if (f->length > 0 && fmpz_sgn(f->coeffs + 0) < 0) fmpz_mpoly_neg(f, f, ctx); sqr = fmpz_mpoly_sqrt_heap(h, g, ctx, 1); fmpz_mpoly_assert_canonical(h, ctx); if (!sqr) { printf("FAIL\n"); flint_printf("Check sqrt(f^2) returns 1\n"); flint_abort(); } if (!fmpz_mpoly_equal(h, f, ctx)) { printf("FAIL\n"); flint_printf("Check sqrt(f^2) = +-f\ni = %wd, j = %wd\n", i ,j); flint_abort(); } sqr = fmpz_mpoly_sqrt_heap(k, g, ctx, 0); fmpz_mpoly_assert_canonical(k, ctx); if (!sqr) { printf("FAIL\n"); flint_printf("Check sqrt(f^2) returns 1: nocheck\n"); flint_abort(); } if (!fmpz_mpoly_equal(k, f, ctx)) { printf("FAIL\n"); flint_printf("Check sqrt(f)^2 = +-f\ni = %wd, j = %wd: nocheck\n", i ,j); flint_abort(); } } fmpz_mpoly_clear(f, ctx); fmpz_mpoly_clear(g, ctx); fmpz_mpoly_clear(h, ctx); fmpz_mpoly_clear(k, ctx); fmpz_mpoly_ctx_clear(ctx); } /* Check sqrt(f^2*(x^2+x)) returns 0 */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { fmpz_mpoly_ctx_t ctx; fmpz_mpoly_t f, g, h, k, x; slong len, len1, nvars; flint_bitcnt_t exp_bits, exp_bits1; flint_bitcnt_t coeff_bits, coeff_bits1; int sqr; fmpz_mpoly_ctx_init_rand(ctx, state, 10); fmpz_mpoly_init(f, ctx); fmpz_mpoly_init(g, ctx); fmpz_mpoly_init(h, ctx); fmpz_mpoly_init(k, ctx); fmpz_mpoly_init(x, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100) + 1; exp_bits = n_randint(state, 200) + 1; exp_bits1 = n_randint(state, 200) + 1; coeff_bits = n_randint(state, 200); coeff_bits1 = n_randint(state, 200) + 1; nvars = fmpz_mpoly_ctx_nvars(ctx); for (j = 0; j < 4; j++) { do { fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx); } while (fmpz_mpoly_is_zero(f, ctx)); fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_randtest_bits(k, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_mul(g, f, f, ctx); fmpz_mpoly_assert_canonical(g, ctx); fmpz_mpoly_gen(x, n_randint(state, nvars), ctx); fmpz_mpoly_mul(k, x, x, ctx); fmpz_mpoly_add(k, k, x, ctx); fmpz_mpoly_assert_canonical(k, ctx); fmpz_mpoly_mul(g, g, k, ctx); fmpz_mpoly_assert_canonical(g, ctx); sqr = fmpz_mpoly_sqrt_heap(h, g, ctx, 1); fmpz_mpoly_assert_canonical(h, ctx); if (sqr) { printf("FAIL\n"); flint_printf("Check nonsquare returns 0\n"); flint_abort(); } if (!fmpz_mpoly_is_zero(h, ctx)) { printf("FAIL\n"); flint_printf("Nonsquare returns 0 sqrt\n"); flint_abort(); } } fmpz_mpoly_clear(f, ctx); fmpz_mpoly_clear(g, ctx); fmpz_mpoly_clear(h, ctx); fmpz_mpoly_clear(k, ctx); fmpz_mpoly_clear(x, ctx); fmpz_mpoly_ctx_clear(ctx); } /* Check sqrt(random) */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { fmpz_mpoly_ctx_t ctx; fmpz_mpoly_t f, g; slong len, len1; flint_bitcnt_t exp_bits, exp_bits1; flint_bitcnt_t coeff_bits, coeff_bits1; int sqr; fmpz_mpoly_ctx_init_rand(ctx, state, 10); fmpz_mpoly_init(f, ctx); fmpz_mpoly_init(g, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100) + 1; exp_bits = n_randint(state, 200) + 1; exp_bits1 = n_randint(state, 200) + 1; coeff_bits = n_randint(state, 200); coeff_bits1 = n_randint(state, 200) + 1; for (j = 0; j < 4; j++) { fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx); fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx); sqr = fmpz_mpoly_sqrt_heap(g, f, ctx, 1); fmpz_mpoly_assert_canonical(g, ctx); if (sqr) { fmpz_mpoly_mul(g, g, g, ctx); if (!fmpz_mpoly_equal(g, f, ctx)) { flint_printf("FAIL\n"); flint_printf("Check sqrt(random)\n"); flint_abort(); } } else if (!fmpz_mpoly_is_zero(g, ctx)) { flint_printf("FAIL\n"); flint_printf("Nonsquare returns 0 sqrt\n"); flint_abort(); } } fmpz_mpoly_clear(f, ctx); fmpz_mpoly_clear(g, ctx); fmpz_mpoly_ctx_clear(ctx); } /* Check aliasing of square root with input */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { fmpz_mpoly_ctx_t ctx; fmpz_mpoly_t f, g, h, k; slong len, len1; flint_bitcnt_t exp_bits, exp_bits1; flint_bitcnt_t coeff_bits, coeff_bits1; int sqr1, sqr2; fmpz_mpoly_ctx_init_rand(ctx, state, 10); fmpz_mpoly_init(f, ctx); fmpz_mpoly_init(g, ctx); fmpz_mpoly_init(h, ctx); fmpz_mpoly_init(k, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); exp_bits = n_randint(state, 200) + 1; exp_bits1 = n_randint(state, 200) + 1; coeff_bits = n_randint(state, 200); coeff_bits1 = n_randint(state, 200); for (j = 0; j < 4; j++) { fmpz_mpoly_randtest_bits(f, state, len1, coeff_bits1, exp_bits1, ctx); fmpz_mpoly_randtest_bits(g, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_randtest_bits(h, state, len, coeff_bits, exp_bits, ctx); fmpz_mpoly_mul(g, f, f, ctx); fmpz_mpoly_assert_canonical(g, ctx); fmpz_mpoly_set(k, g, ctx); fmpz_mpoly_assert_canonical(k, ctx); sqr1 = fmpz_mpoly_sqrt_heap(h, g, ctx, 1); fmpz_mpoly_assert_canonical(h, ctx); sqr2 = fmpz_mpoly_sqrt_heap(g, g, ctx, 1); fmpz_mpoly_assert_canonical(g, ctx); if (sqr1 != sqr2 || !fmpz_mpoly_equal(g, h, ctx)) { printf("FAIL\n"); flint_printf("Check aliasing\n"); flint_abort(); } sqr2 = fmpz_mpoly_sqrt_heap(k, k, ctx, 0); fmpz_mpoly_assert_canonical(k, ctx); if (sqr1 != sqr2 || !fmpz_mpoly_equal(k, h, ctx)) { printf("FAIL\n"); flint_printf("Check aliasing: nocheck\n"); flint_abort(); } } fmpz_mpoly_clear(f, ctx); fmpz_mpoly_clear(g, ctx); fmpz_mpoly_clear(h, ctx); fmpz_mpoly_clear(k, ctx); fmpz_mpoly_ctx_clear(ctx); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }