/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_poly.h" void _fmpz_poly_cyclotomic(fmpz * a, ulong n, mp_ptr factors, slong num_factors, ulong phi) { slong i, k; int small; ulong D; D = phi / 2; /* Phi_p(x) = 1 + x + x^2 + ... + x^{p-1} */ if (num_factors == 1) { for (i = 0; i <= D; i++) fmpz_one(a + i); return; } /* Phi_{2n}(x) = Phi_n(-x)*/ if (factors[0] == 2) { _fmpz_poly_cyclotomic(a, n / 2, factors + 1, num_factors - 1, phi); for (i = 1; i <= D; i += 2) fmpz_neg(a + i, a + i); return; } fmpz_one(a); for (i = 1; i <= D; i++) fmpz_zero(a + i); /* Coefficients are guaranteed not to overflow an fmpz */ small = (num_factors == 2) || /* Always +1/0/-1*/ (n < 10163195) || /* At most 27 bits */ (FLINT_BITS == 64 && n < 169828113); /* At most 60 bits */ /* Iterate over all divisors of n */ for (k = 0; k < (WORD(1) << num_factors); k++) { int mu; ulong d; mu = (num_factors & 1) ? -1 : 1; d = WORD(1); for (i = 0; i < num_factors; i++) { if ((k >> i) & 1) { d *= factors[i]; mu = -mu; } } /* Multiply by (x^d - 1)^{\mu(n/d)} */ if (small) { if (mu == 1) for (i = D; i >= d; i--) a[i] -= a[i - d]; else for (i = d; i <= D; i++) a[i] += a[i - d]; } else { if (mu == 1) for (i = D; i >= d; i--) fmpz_sub(a + i, a + i, a + i - d); else for (i = d; i <= D; i++) fmpz_add(a + i, a + i, a + i - d); } } } void fmpz_poly_cyclotomic(fmpz_poly_t poly, ulong n) { n_factor_t factors; slong i, j; ulong s, phi; if (n <= 2) { if (n == 0) { fmpz_poly_one(poly); } else { fmpz_poly_fit_length(poly, 2); fmpz_set_si(poly->coeffs, (n == 1) ? -1 : 1); fmpz_set_si(poly->coeffs + 1, 1); _fmpz_poly_set_length(poly, 2); } return; } /* Write n = q * s where q is squarefree, compute the factors of q, and compute phi(s) which determines the degree of the polynomial. */ n_factor_init(&factors); n_factor(&factors, n, 1); s = phi = 1; for (i = 0; i < factors.num; i++) { phi *= factors.p[i] - 1; while (factors.exp[i] > 1) { s *= factors.p[i]; factors.exp[i]--; } } fmpz_poly_fit_length(poly, phi * s + 1); /* Evaluate lower half of Phi_s(x) */ _fmpz_poly_cyclotomic(poly->coeffs, n / s, factors.p, factors.num, phi); /* Palindromic extension */ for (i = 0; i < (phi + 1) / 2; i++) fmpz_set(poly->coeffs + phi - i, poly->coeffs + i); /* Stretch */ if (s != 1) { for (i = phi; i > 0; i--) { fmpz_set(poly->coeffs + i*s, poly->coeffs + i); for (j = 1; j < s; j++) fmpz_zero(poly->coeffs + i*s - j); } } _fmpz_poly_set_length(poly, phi * s + 1); }