/* Copyright (C) 2008, 2009, 2019 William Hart Copyright (C) 2010 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" #define FLINT_DIVREM_DIVCONQUER_CUTOFF 16 int _fmpz_poly_divrem_divconquer_recursive(fmpz * Q, fmpz * BQ, fmpz * W, const fmpz * A, const fmpz * B, slong lenB, int exact) { if (lenB <= FLINT_DIVREM_DIVCONQUER_CUTOFF) { _fmpz_vec_zero(BQ, lenB - 1); _fmpz_vec_set(BQ + (lenB - 1), A + (lenB - 1), lenB); if (!_fmpz_poly_divrem_basecase(Q, BQ, BQ, 2 * lenB - 1, B, lenB, exact)) return 0; _fmpz_vec_neg(BQ, BQ, lenB - 1); _fmpz_vec_sub(BQ + (lenB - 1), A + (lenB - 1), BQ + (lenB - 1), lenB); } else { const slong n2 = lenB / 2; const slong n1 = lenB - n2; fmpz * W1 = W; fmpz * W2 = W + lenB; const fmpz * p1 = A + 2 * n2; const fmpz * p2; const fmpz * d1 = B + n2; const fmpz * d2 = B; const fmpz * d3 = B + n1; const fmpz * d4 = B; fmpz * q1 = Q + n2; fmpz * q2 = Q; fmpz * dq1 = BQ + n2; fmpz * d1q1 = BQ + 2 * n2; fmpz *d2q1, *d3q2, *d4q2, *t; /* Set q1 to p1 div d1, a 2 n1 - 1 by n1 division so q1 ends up being of length n1; d1q1 = d1 q1 is of length 2 n1 - 1 */ if (!_fmpz_poly_divrem_divconquer_recursive(q1, d1q1, W1, p1, d1, n1, exact)) return 0; /* Compute d2q1 = d2 q1, of length lenB - 1 */ d2q1 = W1; _fmpz_poly_mul(d2q1, q1, n1, d2, n2); /* Compute dq1 = d1 q1 x^n2 + d2 q1, of length 2 n1 + n2 - 1 */ _fmpz_vec_swap(dq1, d2q1, n2); _fmpz_vec_add(dq1 + n2, dq1 + n2, d2q1 + n2, n1 - 1); /* Compute t = A/x^n2 - dq1, which has length 2 n1 + n2 - 1, but we are not interested in the top n1 coeffs as they will be zero, so this has effective length n1 + n2 - 1 For the following division, we want to set {p2, 2 n2 - 1} to the top 2 n2 - 1 coeffs of this Since the bottom n2 - 1 coeffs of p2 are irrelevant for the division, we in fact set {t, n2} to the relevant coeffs */ t = BQ; _fmpz_vec_sub(t, A + n2 + (n1 - 1), dq1 + (n1 - 1), n2); p2 = t - (n2 - 1); /* Compute q2 = t div d3, a 2 n2 - 1 by n2 division, so q2 will have length n2; let d3q2 = d3 q2, of length 2 n2 - 1 */ d3q2 = W1; if (!_fmpz_poly_divrem_divconquer_recursive(q2, d3q2, W2, p2, d3, n2, exact)) return 0; /* Compute d4q2 = d4 q2, of length n1 + n2 - 1 = lenB - 1 */ d4q2 = W2; _fmpz_poly_mul(d4q2, d4, n1, q2, n2); /* Compute dq2 = d3q2 x^n1 + d4q2, of length n1 + 2 n2 - 1 */ _fmpz_vec_swap(BQ, d4q2, n2); _fmpz_vec_add(BQ + n2, BQ + n2, d4q2 + n2, n1 - 1); _fmpz_vec_add(BQ + n1, BQ + n1, d3q2, 2 * n2 - 1); /* Note Q = q1 x^n2 + q2, and BQ = dq1 x^n2 + dq2 */ } return 1; }