/*
Copyright (C) 2008, 2009 William Hart
Copyright (C) 2010 Sebastian Pancratz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
#define FLINT_DIVREMLOW_DIVCONQUER_CUTOFF 16
int
_fmpz_poly_divremlow_divconquer_recursive(fmpz * Q, fmpz * QB,
const fmpz * A, const fmpz * B, slong lenB, int exact)
{
if (lenB <= FLINT_DIVREMLOW_DIVCONQUER_CUTOFF)
{
if (!_fmpz_poly_divrem_basecase(Q, QB, A, 2 * lenB - 1, B, lenB, exact))
return 0;
_fmpz_vec_sub(QB, A, QB, lenB - 1);
}
else
{
const slong n2 = lenB / 2;
const slong n1 = lenB - n2;
const fmpz * p1 = A + 2 * n2;
const fmpz * p2;
const fmpz * d1 = B + n2;
const fmpz * d2 = B;
fmpz * q1 = Q + n2;
fmpz * q2 = Q;
/*
Think of the top lenB coefficients of QB as temporary space; this
code will not depend on {QB, lenB - 1} and W being adjacent
*/
fmpz * W = QB + (lenB - 1);
fmpz *d1q1, *d2q1, *t, *d3q2, *d4q2;
/*
Set q1 to p1 div d1, a 2 n1 - 1 by n1 division, so q1 has length
at most n1; {W, n1 - 1} is d1 * q1 is truncated to length n1 - 1
*/
if (!_fmpz_poly_divremlow_divconquer_recursive(q1, W, p1, d1, n1, exact))
return 0;
/*
W is of length lenB, but we only care about the bottom n1 - 1
coeffs, which we push up by n2 + 1, to the very top; we do this
manually here instead of via _fmpz_vec_swap() because the source
and destination arrays overlap
*/
d1q1 = W + (n2 + 1);
{
slong i;
for (i = 0; i < n1 - 1; i++)
fmpz_swap(d1q1 + i, W + i);
}
/*
Compute d2q1 = d2 * q1, of length at most lenB - 1; we'll need the
top n2 coeffs for t and the bottom n1 - 1 coeffs for QB
*/
d2q1 = QB;
_fmpz_poly_mul(d2q1, q1, n1, d2, n2);
/*
Compute {t - (n2 - 1), 2 n2 - 1} to be the top 2 n2 - 1 coeffs of
A / x^n2 - (d1q1 x^n2 + d2q1).
Note that actually the bottom n2 - 1 coeffs may be arbitrary
*/
t = W + n1;
if (n1 == n2)
fmpz_zero(t);
_fmpz_vec_add(t, t, d2q1 + (n1 - 1), n2);
_fmpz_vec_neg(t, t, n2);
_fmpz_vec_add(t, t, A + (n1 + n2 - 1), n2);
p2 = t - (n2 - 1);
/*
Move {QB, n1 - 1} into the bottom coefficients of W, so that
we can use {QB, 2 n2 - 1} as space in the next division
*/
_fmpz_vec_swap(QB, W, n1 - 1);
/*
Compute q2 = t div {B + n1}, a 2 n2 - 1 by n2 division
*/
d3q2 = QB;
if (!_fmpz_poly_divremlow_divconquer_recursive(q2, d3q2, p2, B + n1, n2, exact))
return 0;
_fmpz_vec_swap(QB + n1, d3q2, n2 - 1);
if (lenB & WORD(1))
fmpz_zero(QB + n2);
_fmpz_vec_add(QB + n2, QB + n2, W, n1 - 1);
/*
Compute {d4q2, lenB - 1} as {B, n1} * {q2, n2}; then move the
bottom n2 coeffs of this into {QB, n2}, and add the top n1 - 1
coeffs to {QB + n2, n1 - 1}
*/
d4q2 = W;
_fmpz_poly_mul(d4q2, B, n1, q2, n2);
_fmpz_vec_swap(QB, d4q2, n2);
_fmpz_vec_add(QB + n2, QB + n2, d4q2 + n2, n1 - 1);
}
return 1;
}