/* Copyright (C) 2008, 2009 William Hart Copyright (C) 2010 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" #define FLINT_DIVREMLOW_DIVCONQUER_CUTOFF 16 int _fmpz_poly_divremlow_divconquer_recursive(fmpz * Q, fmpz * QB, const fmpz * A, const fmpz * B, slong lenB, int exact) { if (lenB <= FLINT_DIVREMLOW_DIVCONQUER_CUTOFF) { if (!_fmpz_poly_divrem_basecase(Q, QB, A, 2 * lenB - 1, B, lenB, exact)) return 0; _fmpz_vec_sub(QB, A, QB, lenB - 1); } else { const slong n2 = lenB / 2; const slong n1 = lenB - n2; const fmpz * p1 = A + 2 * n2; const fmpz * p2; const fmpz * d1 = B + n2; const fmpz * d2 = B; fmpz * q1 = Q + n2; fmpz * q2 = Q; /* Think of the top lenB coefficients of QB as temporary space; this code will not depend on {QB, lenB - 1} and W being adjacent */ fmpz * W = QB + (lenB - 1); fmpz *d1q1, *d2q1, *t, *d3q2, *d4q2; /* Set q1 to p1 div d1, a 2 n1 - 1 by n1 division, so q1 has length at most n1; {W, n1 - 1} is d1 * q1 is truncated to length n1 - 1 */ if (!_fmpz_poly_divremlow_divconquer_recursive(q1, W, p1, d1, n1, exact)) return 0; /* W is of length lenB, but we only care about the bottom n1 - 1 coeffs, which we push up by n2 + 1, to the very top; we do this manually here instead of via _fmpz_vec_swap() because the source and destination arrays overlap */ d1q1 = W + (n2 + 1); { slong i; for (i = 0; i < n1 - 1; i++) fmpz_swap(d1q1 + i, W + i); } /* Compute d2q1 = d2 * q1, of length at most lenB - 1; we'll need the top n2 coeffs for t and the bottom n1 - 1 coeffs for QB */ d2q1 = QB; _fmpz_poly_mul(d2q1, q1, n1, d2, n2); /* Compute {t - (n2 - 1), 2 n2 - 1} to be the top 2 n2 - 1 coeffs of A / x^n2 - (d1q1 x^n2 + d2q1). Note that actually the bottom n2 - 1 coeffs may be arbitrary */ t = W + n1; if (n1 == n2) fmpz_zero(t); _fmpz_vec_add(t, t, d2q1 + (n1 - 1), n2); _fmpz_vec_neg(t, t, n2); _fmpz_vec_add(t, t, A + (n1 + n2 - 1), n2); p2 = t - (n2 - 1); /* Move {QB, n1 - 1} into the bottom coefficients of W, so that we can use {QB, 2 n2 - 1} as space in the next division */ _fmpz_vec_swap(QB, W, n1 - 1); /* Compute q2 = t div {B + n1}, a 2 n2 - 1 by n2 division */ d3q2 = QB; if (!_fmpz_poly_divremlow_divconquer_recursive(q2, d3q2, p2, B + n1, n2, exact)) return 0; _fmpz_vec_swap(QB + n1, d3q2, n2 - 1); if (lenB & WORD(1)) fmpz_zero(QB + n2); _fmpz_vec_add(QB + n2, QB + n2, W, n1 - 1); /* Compute {d4q2, lenB - 1} as {B, n1} * {q2, n2}; then move the bottom n2 coeffs of this into {QB, n2}, and add the top n1 - 1 coeffs to {QB + n2, n1 - 1} */ d4q2 = W; _fmpz_poly_mul(d4q2, B, n1, q2, n2); _fmpz_vec_swap(QB, d4q2, n2); _fmpz_vec_add(QB + n2, QB + n2, d4q2 + n2, n1 - 1); } return 1; }