/* Copyright (C) 2011 Andy Novocin Copyright (C) 2011 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_poly.h" #include "fmpz_mod_poly.h" /* Macro for the lift B := [{(1 - aG - bH)/p} * b mod g] p + b, of length at most lenG - 1. Assumes that {C, lenC} contains the inner part {(1 - aG - bH)/p} mod p1, where lenC = max(lenA + lenG - 1, lenB + lenH - 1). Requires temporary space M, D, E. We really only need lenM = max(lenG, lenH) lenE = max(lenG + lenB - 2, lenH + lenA - 2) lenD = max(lenC, lenE) Writes {B, lenG - 1}. The cofactor that is lifted is the polynomial {b, lenB}, which may be aliased with B. Although it suffices to have g modulo p, there is no harm in supplying {g, lenG} only reduced modulo p p1. */ #define liftinv(B, b, lenB, g, lenG) \ do { \ _fmpz_vec_scalar_mod_fmpz(M, g, lenG, p1); \ _fmpz_mod_poly_rem(D, C, lenC, M, lenG, one, p1); \ _fmpz_mod_poly_mul(E, D, lenG - 1, b, lenB, p1); \ if (lenB > 1) \ { \ _fmpz_mod_poly_rem(D, E, lenG + lenB - 2, M, lenG, one, p1); \ _fmpz_vec_scalar_mul_fmpz(M, D, lenG - 1, p); \ } \ else \ { \ _fmpz_vec_scalar_mul_fmpz(M, E, lenG - 1, p); \ } \ _fmpz_poly_add(B, M, lenG - 1, b, lenB); \ } while (0) void _fmpz_poly_hensel_lift_only_inverse(fmpz *A, fmpz *B, const fmpz *G, slong lenG, const fmpz *H, slong lenH, const fmpz *a, slong lenA, const fmpz *b, slong lenB, const fmpz_t p, const fmpz_t p1) { const fmpz one[1] = {WORD(1)}; const slong lenC = FLINT_MAX(lenA + lenG - 1, lenB + lenH - 1); const slong lenM = FLINT_MAX(lenG, lenH); const slong lenE = FLINT_MAX(lenG + lenB - 2, lenH + lenA - 2); const slong lenD = FLINT_MAX(lenC, lenE); fmpz *C, *D, *E, *M; C = _fmpz_vec_init(lenC + lenD + lenD + lenM); D = C + lenC; E = D + lenD; M = E + lenE; if (lenG >= lenA) _fmpz_poly_mul(C, G, lenG, a, lenA); else _fmpz_poly_mul(C, a, lenA, G, lenG); if (lenH >= lenB) _fmpz_poly_mul(D, H, lenH, b, lenB); else _fmpz_poly_mul(D, b, lenB, H, lenH); _fmpz_vec_add(C, C, D, lenC); fmpz_sub_ui(C, C, 1); _fmpz_vec_neg(C, C, lenC); _fmpz_vec_scalar_divexact_fmpz(D, C, lenC, p); _fmpz_vec_scalar_mod_fmpz(C, D, lenC, p1); liftinv(B, b, lenB, G, lenG); liftinv(A, a, lenA, H, lenH); _fmpz_vec_clear(C, lenC + lenD + lenD + lenM); } void fmpz_poly_hensel_lift_only_inverse(fmpz_poly_t Aout, fmpz_poly_t Bout, const fmpz_poly_t G, const fmpz_poly_t H, const fmpz_poly_t a, const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1) { fmpz_poly_fit_length(Aout, H->length - 1); fmpz_poly_fit_length(Bout, G->length - 1); _fmpz_poly_hensel_lift_only_inverse(Aout->coeffs, Bout->coeffs, G->coeffs, G->length, H->coeffs, H->length, a->coeffs, a->length, b->coeffs, b->length, p, p1); _fmpz_poly_set_length(Aout, H->length - 1); _fmpz_poly_set_length(Bout, G->length - 1); _fmpz_poly_normalise(Aout); _fmpz_poly_normalise(Bout); }