/* Copyright (C) 2010 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" void _fmpz_poly_pow_addchains(fmpz * res, const fmpz * poly, slong len, const int * a, int n) { int *b; slong lenm1 = len - 1, lenv; fmpz *v; /* Compute partial sums */ { int i; b = (int *) flint_malloc(n * sizeof(int)); b[0] = 0; for (i = 1; i < n; i++) b[i] = b[i-1] + a[i]; } /* Allocate memory for the polynomials f^{a[1]}, ..., f^{a[n-1]} */ lenv = lenm1 * b[n-1] + n - 1; v = _fmpz_vec_init(lenv); /* Compute f^{a[1]}, ..., f^{a[n-1]} */ { int d, i, j; _fmpz_poly_sqr(v, poly, len); for (i = 1; i < n-1; i++) { d = a[i+1] - a[i]; if (d == 1) { _fmpz_poly_mul(v + lenm1 * b[i] + (i), v + lenm1 * b[i-1], lenm1 * a[i] + 1, poly, len); } else { for (j = i; a[j] != d; j--) ; _fmpz_poly_mul(v + lenm1 * b[i] + (i), v + lenm1 * b[i-1], lenm1 * a[i] + 1, v + lenm1 * b[j-1] + (j-1), lenm1 * a[j] + 1); } } /* Deal with the final product stored in res, i == n-1 */ { d = a[i+1] - a[i]; if (d == 1) { _fmpz_poly_mul(res, v + lenm1 * b[i-1], lenm1 * a[i] + 1, poly, len); } else { for (j = i; a[j] != d; j--) ; _fmpz_poly_mul(res, v + lenm1 * b[i-1], lenm1 * a[i] + 1, v + lenm1 * b[j-1] + (j-1), lenm1 * a[j] + 1); } } } flint_free(b); _fmpz_vec_clear(v, lenv); } void fmpz_poly_pow_addchains(fmpz_poly_t res, const fmpz_poly_t poly, ulong e) { const slong len = poly->length; if ((len < 2) | (e < UWORD(3))) { if (e == UWORD(0)) fmpz_poly_set_ui(res, 1); else if (len == 0) fmpz_poly_zero(res); else if (len == 1) { fmpz_poly_fit_length(res, 1); fmpz_pow_ui(res->coeffs, poly->coeffs, e); _fmpz_poly_set_length(res, 1); } else if (e == UWORD(1)) fmpz_poly_set(res, poly); else /* e == UWORD(2) */ fmpz_poly_sqr(res, poly); return; } if (e <= UWORD(148)) { /* An array storing a tree with shortest addition chains (star chains, in fact) for all integers up to and including 148. Let A denote the array. The entry A[0] is present to provide 1-based indexing. The integer 1 is the root of the tree and the entry A[1] is irrelevant. For integers i >= 2, A[i] is the parent of i. We can iterate through an addition chain for n, where 0 < n < 148, in the array shortest_addchains_148 as follows: Visit n while ((n = shortest_addchains_148[n])) { Visit n } */ static const int shortest_addchains_148[149] = { 0, 0, 1, 2, 2, 3, 3, 5, 4, 8, 5, 10, 6, 9, 7, 12, 8, 9, 16, 18, 10, 15, 11, 20, 12, 17, 13, 24, 14, 25, 15, 28, 16, 32, 17, 26, 18, 36, 19, 27, 20, 40, 21, 34, 22, 30, 23, 46, 24, 33, 25, 48, 26, 37, 27, 54, 28, 49, 29, 56, 30, 52, 31, 51, 32, 64, 33, 66, 34, 68, 35, 70, 36, 72, 66, 60, 38, 43, 39, 78, 40, 65, 41, 80, 42, 80, 43, 86, 44, 88, 45, 90, 46, 92, 47, 92, 48, 96, 49, 96, 50,100, 51,102, 52,102, 53, 74, 54,108, 55,108, 56,104, 57,112, 58,104, 59,112, 60,120, 61,120, 62,100, 63,126, 64,128, 65,130,128,132, 67, 90, 68,136, 69,138, 70,140, 71,117, 72,144, 73, 99, 74 }; int a[11], i = 11, n = (int) e; slong rlen = (slong) e * (len - 1) + 1; /* Copy the addition chain into 1 = a[0] < a[1] < ... < a[n] */ a[--i] = n; while ((n = shortest_addchains_148[n])) a[--i] = n; n = 10 - i; if (res != poly) { fmpz_poly_fit_length(res, rlen); _fmpz_poly_pow_addchains(res->coeffs, poly->coeffs, len, a + i, n); _fmpz_poly_set_length(res, rlen); } else { fmpz_poly_t t; fmpz_poly_init2(t, rlen); _fmpz_poly_pow_addchains(t->coeffs, poly->coeffs, len, a + i, n); _fmpz_poly_set_length(t, rlen); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } } else { flint_printf("Exception (fmpz_poly_addchains). Powering via chains not implemented for e > 148.\n"); flint_abort(); } }