/* Copyright (C) 2008, 2009 William Hart Copyright (C) 2010 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "fmpz_poly.h" static void __fmpz_poly_pseudo_divrem_divconquer(fmpz * Q, fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv) { if (lenB <= 16 || (lenA > 2 * lenB - 1 && lenA < 128)) { _fmpz_poly_pseudo_divrem_basecase(Q, R, d, A, lenA, B, lenB, inv); } else { const slong n2 = lenB / 2; const slong n1 = lenB - n2; const fmpz * d1 = B + n2; const fmpz * d2 = B; const fmpz * d3 = B + n1; const fmpz * d4 = B; if (lenA <= lenB + n2 - 1) { fmpz *p1, *r1, *d2q1; fmpz *f; /* Shift A right by n1, zero the bottom n2 - 1 coeffs; call this p1 */ p1 = (fmpz *) flint_malloc((lenA - n1) * sizeof(fmpz)); { slong i; flint_mpn_zero((mp_ptr) p1, n2 - 1); for (i = n2 - 1; i < lenA - n1; i++) p1[i] = (A + n1)[i]; } /* Compute p1 div d3, at most a 2 n2 - 1 by n2 division, leaving lenA - lenB + 1 <= n2 terms in the quotient */ r1 = R + n1; _fmpz_poly_pseudo_divrem_divconquer(Q, r1, d, p1, lenA - n1, d3, n2, inv); flint_free(p1); /* Push the relevant {n2 - 1} terms of the remainder to the top of {R, lenA} */ { slong i; for (i = n2 - 2; i >= 0; i--) fmpz_swap(R + lenA - (n2 - 1) + i, r1 + i); r1 = R + lenA - (n2 - 1); } /* Compute d2q1 = Q d4 of length lenA - n2, which is at most n1 + n2 - 1 terms */ d2q1 = R; _fmpz_poly_mul(d2q1, d4, n1, Q, lenA - lenB + 1); /* Compute R = L^d R', where R' is the terms of A we have not dealt, of which there are at most n1 + n2 - 1; that is, Set R to {A, n1 + n2 - 1} * f + r1 x^n1 - d2q1 */ _fmpz_vec_neg(R, R, lenA - n2); _fmpz_vec_add(R + n1, R + n1, R + lenA - n2 + 1, lenA - lenB); _fmpz_vec_swap(R + lenA - n2, R + 2 * lenA - lenB + 1 - n2, n2 - (lenA - lenB + 1)); f = R + lenB - 1; fmpz_pow_ui(f, B + (lenB - 1), *d); _fmpz_vec_scalar_addmul_fmpz(R, A, n1 + n2 - 1, f); } else if (lenA > 2 * lenB - 1) { /* XXX: In this case, we expect A to be modifiable */ ulong s1, s2; const slong shift = lenA - 2 * lenB + 1; fmpz * q1 = Q + shift; fmpz * q2 = Q; fmpz * r1 = R; fmpz *p1, *t; fmpz_t f; fmpz_init(f); /* Shift A right until it is of length 2 lenB - 1, call this p1; zero the bottom lenB - 1 coeffs */ p1 = (fmpz *) flint_malloc((2 * lenB - 1) * sizeof(fmpz)); { slong i; flint_mpn_zero((mp_ptr) p1, lenB - 1); for (i = lenB - 1; i < 2*lenB - 1; i++) p1[i] = (A + shift)[i]; } /* Set q1 to p1 div B, a 2 lenB - 1 by lenB division, so q1 ends up being at most length lenB; r1 is of length at most lenB - 1 */ _fmpz_poly_pseudo_divrem_divconquer(q1, r1, &s1, p1, 2 * lenB - 1, B, lenB, inv); flint_free(p1); /* Compute t = L^s1 a2 + r1 x^shift, of length at most lenA - lenB since r1 is of length at most lenB - 1. Here a2 is what remains of A after the first lenR coefficients are removed */ t = (fmpz *) A; fmpz_pow_ui(f, B + (lenB - 1), s1); _fmpz_vec_scalar_mul_fmpz(t, A, lenA - lenB, f); _fmpz_vec_add(t + shift, t + shift, r1, lenB - 1); /* Compute q2 = t div B; it is a smaller division than the original since len(t) <= lenA - lenB, and r2 has length at most lenB - 1 */ _fmpz_poly_pseudo_divrem_divconquer(q2, R, &s2, t, lenA - lenB, B, lenB, inv); /* Write out Q = L^s2 q1 x^shift + q2, of length at most lenB + shift. Note q2 has length at most shift since it is at most an lenA - lenB by lenB division; q1 cannot have length zero since we are doing pseudo division */ fmpz_pow_ui(f, B + (lenB - 1), s2); _fmpz_vec_scalar_mul_fmpz(q1, q1, lenB, f); *d = s1 + s2; fmpz_clear(f); } else /* n1 + 2 n2 - 1 < lenA <= 2 lenB - 1 */ { fmpz * q1 = Q + n2; fmpz * q2 = Q; fmpz * r1 = R; fmpz * d2q1 = R + (n1 - 1); fmpz *p1, *t; fmpz_t f; ulong s1, s2; fmpz_init(f); /* Set p1 to the top lenA - 2 n2 coeffs of A, clearing the bottom n1 - 1 coeffs */ p1 = (fmpz *) flint_malloc((lenA - 2 * n2) * sizeof(fmpz)); { slong i; flint_mpn_zero((mp_ptr) p1, n1 - 1); for (i = n1 - 1; i < lenA - 2 * n2; i++) p1[i] = (A + 2 * n2)[i]; } /* Set q1 to p1 div d1, at most a 2 n1 - 1 by n1 division, so q1 ends up being of length at most n1; r1 is of length n1 - 1 */ _fmpz_poly_pseudo_divrem_divconquer(q1, r1, &s1, p1, lenA - 2 * n2, d1, n1, inv); flint_free(p1); /* Compute d2q1 = d2q1, of length lenA - lenB Note lenA - lenB <= lenB - 1 <= 2 n2 and lenA - (n1 - 1) > 2 n2, so we can store d2q1 in the top 2 n2 coeffs of R */ if (n2 >= lenA - n1 - 2 * n2 + 1) _fmpz_poly_mul(d2q1, d2, n2, q1, lenA - (n1 + 2 * n2 - 1)); else _fmpz_poly_mul(d2q1, q1, lenA - (n1 + 2 * n2 - 1), d2, n2); /* Compute t = L^s1 * (a2 x^{n1 + n2 - 1} + a3) + r1 x^{2 n2} - d2q1 x^n2 of length at most lenB + n2 - 1, since r1 is of length at most n1 - 1 and d2q1 is of length at most n1 + n2 - 1 */ t = _fmpz_vec_init(n1 + 2 * n2 - 1); fmpz_pow_ui(f, B + (lenB - 1), s1); _fmpz_vec_scalar_mul_fmpz(t, A, n1 + 2 * n2 - 1, f); _fmpz_vec_add(t + 2 * n2, t + 2 * n2, r1, n1 - 1); _fmpz_vec_sub(t + n2, t + n2, d2q1, lenA - lenB); /* Compute q2 = t div B and set R to the remainder, at most a lenB + n2 - 1 by lenB division, so q2 is of length at most n2 */ _fmpz_poly_pseudo_divrem_divconquer(q2, R, &s2, t, lenB + n2 - 1, B, lenB, inv); _fmpz_vec_clear(t, n1 + 2 * n2 - 1); /* Write Q = L^s2 q1 x^n2 + q2; note len(q1) is non-zero since we are performing pseudo division */ fmpz_pow_ui(f, B + (lenB - 1), s2); _fmpz_vec_scalar_mul_fmpz(q1, q1, lenA - lenB + 1 - n2, f); *d = s1 + s2; fmpz_clear(f); } } } void _fmpz_poly_pseudo_divrem_divconquer(fmpz * Q, fmpz * R, ulong * d, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_preinvn_t inv) { if (lenA <= 2 * lenB - 1) { __fmpz_poly_pseudo_divrem_divconquer(Q, R, d, A, lenA, B, lenB, inv); } else /* lenA > 2 * lenB - 1 */ { fmpz *S = _fmpz_vec_init(lenA); _fmpz_vec_set(S, A, lenA); __fmpz_poly_pseudo_divrem_divconquer(Q, R, d, S, lenA, B, lenB, inv); _fmpz_vec_clear(S, lenA); } } void fmpz_poly_pseudo_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const fmpz_poly_t B) { slong lenq, lenr; fmpz *q, *r; if (B->length == 0) { flint_printf("Exception (fmpz_poly_pseudo_divrem_divconquer). Division by zero.\n"); flint_abort(); } if (Q == R) { flint_printf("Exception (fmpz_poly_pseudo_divrem_divconquer). \n" "Output arguments Q and R may not be aliased.\n"); flint_abort(); } if (A->length < B->length) { fmpz_poly_zero(Q); fmpz_poly_set(R, A); *d = 0; return; } lenq = A->length - B->length + 1; lenr = A->length; if (Q == A || Q == B) q = _fmpz_vec_init(lenq); else { fmpz_poly_fit_length(Q, lenq); q = Q->coeffs; } if (R == A || R == B) r = _fmpz_vec_init(lenr); else { fmpz_poly_fit_length(R, lenr); r = R->coeffs; } _fmpz_poly_pseudo_divrem_divconquer(q, r, d, A->coeffs, A->length, B->coeffs, B->length, NULL); lenr = B->length - 1; FMPZ_VEC_NORM(r, lenr); if (Q == A || Q == B) { _fmpz_vec_clear(Q->coeffs, Q->alloc); Q->coeffs = q; Q->alloc = lenq; Q->length = lenq; } else _fmpz_poly_set_length(Q, lenq); if (R == A || R == B) { _fmpz_vec_clear(R->coeffs, R->alloc); R->coeffs = r; R->alloc = A->length; R->length = lenr; } else _fmpz_poly_set_length(R, lenr); }