/* Copyright (C) 2012 Fredrik Johansson Copyright (C) 2018 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_poly.h" int _fmpz_poly_sqrt_classical(fmpz * res, const fmpz * poly, slong len, int exact) { slong i, m; int result; /* the degree must be even */ if (len % 2 == 0) return 0; if (exact) { /* valuation must be even, and then can be reduced to 0 */ while (fmpz_is_zero(poly)) { if (!fmpz_is_zero(poly + 1)) return 0; fmpz_zero(res); poly += 2; len -= 2; res++; } } /* check whether a square root exists modulo 2 */ m = (len + 1) / 2; for (i = ((m - 1) | 1); i < len; i += 2) if (!fmpz_is_even(poly + i)) return 0; if (exact) { for (i = 1; i < ((m - 1) | 1); i += 2) if (!fmpz_is_even(poly + i)) return 0; } /* check endpoints */ if (exact && !fmpz_is_square(poly)) return 0; if ((len > 1 || !exact) && !fmpz_is_square(poly + len - 1)) return 0; /* square root of leading coefficient */ fmpz_sqrt(res + m - 1, poly + len - 1); result = 1; /* do divison style 'square root with remainder' from top to bottom */ if (len > 1) { fmpz_t t, u; fmpz * r; fmpz_init(t); fmpz_init(u); r = _fmpz_vec_init(len); _fmpz_vec_set(r, poly, len); fmpz_mul_ui(u, res + m - 1, 2); for (i = 1; i < (m + 1)/2; i++) { fmpz_fdiv_qr(res + m - i - 1, t, r + len - i - 1, u); if (!fmpz_is_zero(t)) { result = 0; break; } fmpz_mul_si(t, res + m - i - 1, -2); _fmpz_vec_scalar_addmul_fmpz(r + len - 2*i, res + m - i, i - 1, t); fmpz_submul(r + len - 2*i - 1, res + m - i - 1, res + m - i - 1); } if (exact) { for (i = (m + 1)/2; i < m; i++) { fmpz_fdiv_qr(res + m - i - 1, t, r + len - i - 1, u); if (!fmpz_is_zero(t)) { result = 0; break; } fmpz_mul_si(t, res + m - i - 1, -2); _fmpz_vec_scalar_addmul_fmpz(r + len - 2*i, res + m - i, i - 1, t); fmpz_submul(r + len - 2*i - 1, res + m - i - 1, res + m - i - 1); } for (i = m; i < len && result; i++) if (!fmpz_is_zero(r + len - 1 - i)) result = 0; } else { for (i = (m + 1)/2; i < m - 1; i++) { fmpz_fdiv_qr(res + m - i - 1, t, r + len - i - 1, u); if (!fmpz_is_zero(t)) { result = 0; break; } fmpz_mul_si(t, res + m - i - 1, -2); _fmpz_vec_scalar_addmul_fmpz(r + len - m, res + i, m - i - 1, t); } if (m > 1) { fmpz_fdiv_qr(res + 0, t, r + len - m, u); if (!fmpz_is_zero(t)) result = 0; } } _fmpz_vec_clear(r, len); fmpz_clear(t); fmpz_clear(u); } return result; } int fmpz_poly_sqrt_classical(fmpz_poly_t b, const fmpz_poly_t a) { slong blen, len = a->length; int result; if (len % 2 == 0) { fmpz_poly_zero(b); return len == 0; } if (b == a) { fmpz_poly_t tmp; fmpz_poly_init(tmp); result = fmpz_poly_sqrt_classical(tmp, a); fmpz_poly_swap(b, tmp); fmpz_poly_clear(tmp); return result; } blen = len / 2 + 1; fmpz_poly_fit_length(b, blen); _fmpz_poly_set_length(b, blen); result = _fmpz_poly_sqrt_classical(b->coeffs, a->coeffs, len, 1); if (!result) _fmpz_poly_set_length(b, 0); return result; }