/* Copyright (C) 2012 Fredrik Johansson Copyright (C) 2018, 2019 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_poly.h" /* Implements the square root with remainder function of "speeding up the division and square root of power series", by Hanrot, Quercia and Zimmermann (see https://hal.inria.fr/inria-00072675/document), but omitting the remainder in the power series case. TODO: implement middle product so that we can implement their Sqrt function (their specialised square root Divide function requires it). */ int _fmpz_poly_sqrt_divconquer(fmpz * res, const fmpz * poly, slong len, int exact) { slong i, n, n2; fmpz * r, * temp; int result; if (len < FMPZ_POLY_SQRT_DIVCONQUER_CUTOFF) return _fmpz_poly_sqrt_classical(res, poly, len, exact); /* the degree must be even */ if (len % 2 == 0) return 0; n = (len + 1)/2; /* check whether a square root exists modulo 2 */ n2 = (n + 1)/2; /* only check coeffs that won't be checked recursively */ for (i = ((n - 1) | 1); i < len - n2; i += 2) if (!fmpz_is_even(poly + i)) return 0; if (exact) { for (i = 1; i < ((n - 1) | 1); i += 2) if (!fmpz_is_even(poly + i)) return 0; } /* check endpoints */ if (exact && !fmpz_is_square(poly)) return 0; r = _fmpz_vec_init(len); temp = _fmpz_vec_init(len); _fmpz_vec_set(r, poly, len); result = _fmpz_poly_sqrtrem_divconquer(res + n - n2, r + len - 2*n2 + 1, r + len - 2*n2 + 1, 2*n2 - 1, temp); if (result) { _fmpz_vec_scalar_mul_ui(temp, res + n - n2, n2, 2); _fmpz_vec_set(temp + n, r + n2, 2*n - 2*n2 - 1); if (!_fmpz_poly_divrem(res, r + n2, temp + n, 2*n - 2*n2 - 1, temp + 2*n2 - n, n - n2, 1)) result = 0; if (exact && result) { _fmpz_poly_mul(temp + 2*n2 - n, res, n - n2, res, n - n2); _fmpz_vec_sub(r, r, temp + 2*n2 - n, 2*n - 2*n2 - 1); if (2*n2 > n) _fmpz_vec_scalar_submul_fmpz(r + n - n2, res, n2 - 1, temp); for (i = n; i < len && result; i++) { if (!fmpz_is_zero(r + len - 1 - i)) { result = 0; break; } } } } _fmpz_vec_clear(r, len); _fmpz_vec_clear(temp, len); return result; } int fmpz_poly_sqrt_divconquer(fmpz_poly_t b, const fmpz_poly_t a) { slong blen, len = a->length; int result; if (len % 2 == 0) { fmpz_poly_zero(b); return len == 0; } if (b == a) { fmpz_poly_t tmp; fmpz_poly_init(tmp); result = fmpz_poly_sqrt_divconquer(tmp, a); fmpz_poly_swap(b, tmp); fmpz_poly_clear(tmp); return result; } blen = len / 2 + 1; fmpz_poly_fit_length(b, blen); _fmpz_poly_set_length(b, blen); result = _fmpz_poly_sqrt_divconquer(b->coeffs, a->coeffs, len, 1); if (!result) _fmpz_poly_set_length(b, 0); return result; }