/*
Copyright (C) 2012 Fredrik Johansson
Copyright (C) 2018, 2019 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "fmpz.h"
#include "fmpz_poly.h"
/*
Implements the square root with remainder function of "speeding up the
division and square root of power series", by Hanrot, Quercia and
Zimmermann (see https://hal.inria.fr/inria-00072675/document).
TODO: implement middle product so that we can implement their Sqrt function
(their specialised square root Divide function requires it).
*/
int
_fmpz_poly_sqrtrem_divconquer(fmpz * res, fmpz * r, const fmpz * poly, slong len, fmpz * temp)
{
slong i, n, n2;
if (len < FMPZ_POLY_SQRTREM_DIVCONQUER_CUTOFF)
return _fmpz_poly_sqrtrem_classical(res, r, poly, len);
/* the degree must be even */
if (len % 2 == 0)
return 0;
n = (len + 1)/2;
/* check whether a square root exists modulo 2 */
n2 = (n + 1)/2;
/* only check coeffs that won't be checked recursively */
for (i = ((n - 1) | 1); i < len - n2; i += 2)
if (!fmpz_is_even(poly + i))
return 0;
if (r != poly)
_fmpz_vec_set(r, poly, len);
if (!_fmpz_poly_sqrtrem_divconquer(res + n - n2, r + len - 2*n2 + 1, r + len - 2*n2 + 1, 2*n2 - 1, temp))
return 0;
_fmpz_vec_scalar_mul_ui(temp, res + n - n2, n2, 2);
_fmpz_vec_set(temp + n, r + n2, 2*n - 2*n2 - 1);
if (!_fmpz_poly_divrem(res, r + n2, temp + n, 2*n - 2*n2 - 1, temp + 2*n2 - n, n - n2, 1))
return 0;
_fmpz_poly_mul(temp + 2*n2 - n, res, n - n2, res, n - n2);
_fmpz_vec_sub(r, r, temp + 2*n2 - n, 2*n - 2*n2 - 1);
if (2*n2 > n)
_fmpz_vec_scalar_submul_fmpz(r + n - n2, res, n2 - 1, temp);
return 1;
}
int
fmpz_poly_sqrtrem_divconquer(fmpz_poly_t b, fmpz_poly_t r, const fmpz_poly_t a)
{
slong blen, len = a->length;
fmpz * temp;
int result;
if (len % 2 == 0)
{
fmpz_poly_zero(b);
fmpz_poly_zero(r);
return len == 0;
}
if (b == a)
{
fmpz_poly_t tmp;
fmpz_poly_init(tmp);
result = fmpz_poly_sqrtrem_divconquer(tmp, r, a);
fmpz_poly_swap(b, tmp);
fmpz_poly_clear(tmp);
return result;
}
blen = len / 2 + 1;
fmpz_poly_fit_length(r, len);
fmpz_poly_fit_length(b, blen);
_fmpz_poly_set_length(b, blen);
temp = _fmpz_vec_init(len);
result = _fmpz_poly_sqrtrem_divconquer(b->coeffs, r->coeffs, a->coeffs, len, temp);
if (!result)
_fmpz_poly_set_length(b, 0);
else
{
_fmpz_poly_set_length(r, blen - 1);
_fmpz_poly_normalise(r);
}
_fmpz_vec_clear(temp, len);
return result;
}