/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "fmpz_poly.h" /* Bound coefficients using (x + u)^(2^n) and the binomial coefficients. TODO: this is about 2x too large... */ static slong __bound_prec(ulong n) { slong i; double u, N; N = UWORD(1) << n; /* u = (sum of square roots)^(2^n) */ u = 0; for (i = 0; i < n; i++) u += sqrt(n_nth_prime(1 + i)); u = N * log(u) * 1.44269504088897; /* Central binomial coefficient C(N,N/2) < 2^N / sqrt(3*N/2) */ u += N - 0.5*(n-1) - 0.792481250360578; /* log(sqrt(3)) */ return u; } void _fmpz_poly_swinnerton_dyer(fmpz * T, ulong n) { fmpz *square_roots, *tmp1, *tmp2, *tmp3; fmpz_t one; slong i, j, k, N; slong prec; if (n == 0) { fmpz_zero(T); fmpz_one(T + 1); return; } N = WORD(1) << n; prec = __bound_prec(n); fmpz_init(one); fmpz_one(one); fmpz_mul_2exp(one, one, prec); square_roots = _fmpz_vec_init(n); tmp1 = flint_malloc((N/2 + 1) * sizeof(fmpz)); tmp2 = flint_malloc((N/2 + 1) * sizeof(fmpz)); tmp3 = _fmpz_vec_init(N); for (i = 0; i < n; i++) { fmpz_set_ui(square_roots + i, n_nth_prime(i + 1)); fmpz_mul_2exp(square_roots + i, square_roots + i, 2 * prec); fmpz_sqrt(square_roots + i, square_roots + i); } /* Build linear factors */ for (i = 0; i < N; i++) { fmpz_zero(T + i); for (j = 0; j < n; j++) { if ((i >> j) & 1) fmpz_add(T + i, T + i, square_roots + j); else fmpz_sub(T + i, T + i, square_roots + j); } } /* For each level... */ for (i = 0; i < n; i++) { slong stride = UWORD(1) << i; for (j = 0; j < N; j += 2*stride) { for (k = 0; k < stride; k++) { tmp1[k] = T[j + k]; tmp2[k] = T[j + stride + k]; } tmp1[stride] = *one; tmp2[stride] = *one; _fmpz_poly_mullow(tmp3, tmp1, stride + 1, tmp2, stride + 1, 2*stride); _fmpz_vec_scalar_fdiv_q_2exp(T + j, tmp3, 2*stride, prec); } } /* Round */ fmpz_fdiv_q_2exp(one, one, 1); for (i = 0; i < N; i++) fmpz_add(T + i, T + i, one); _fmpz_vec_scalar_fdiv_q_2exp(T, T, N, prec); fmpz_one(T + (UWORD(1) << n)); _fmpz_vec_clear(square_roots, n); flint_free(tmp1); flint_free(tmp2); _fmpz_vec_clear(tmp3, UWORD(1) << n); fmpz_clear(one); } void fmpz_poly_swinnerton_dyer(fmpz_poly_t poly, ulong n) { slong N = (WORD(1) << n); fmpz_poly_fit_length(poly, N + 1); _fmpz_poly_swinnerton_dyer(poly->coeffs, n); _fmpz_poly_set_length(poly, N + 1); }