/* Copyright (C) 2016 Vincent Delecroix This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_poly.h" int main(void) { int i, j, k, l, result; fmpz_t il, jl, kl, tot; slong n; fmpz_poly_t a, b, c, d, e, f; FLINT_TEST_INIT(state); flint_printf("power_sums...."); /* Check that it is valid in degree 3 with integer roots, ie */ /* for polynomials of the form (x-i)(x-j)(x-k) */ for (i = -5; i < 5; i++) for (j = i; j < 5; j++) for (k = j; k < 5; k++) { fmpz_poly_init(a); fmpz_poly_init(b); fmpz_poly_init(c); fmpz_poly_set_coeff_si(a, 0, -i * j * k); fmpz_poly_set_coeff_si(a, 1, i * j + i * k + j * k); fmpz_poly_set_coeff_si(a, 2, -i - j - k); fmpz_poly_set_coeff_si(a, 3, 1); fmpz_poly_power_sums(b, a, 20); fmpz_poly_power_sums_naive(c, a, 20); result = fmpz_poly_equal(b, c); if (!result) { flint_printf("FAIL:\n"); flint_printf("%d %d %d\n\n", i, j, k); fmpz_poly_print(b), flint_printf("\n\n"); fmpz_poly_print(c), flint_printf("\n\n"); abort(); } fmpz_init(il); fmpz_init(jl); fmpz_init(kl); fmpz_set_ui(il, 1); fmpz_set_ui(jl, 1); fmpz_set_ui(kl, 1); fmpz_init(tot); for (l = 0; l < FLINT_MIN(20, fmpz_poly_length(b)); l++) { fmpz_set(tot, il); fmpz_add(tot, tot, jl); fmpz_add(tot, tot, kl); result = fmpz_equal(fmpz_poly_get_coeff_ptr(b, l), tot); if (!result) { flint_printf("FAIL:\n\n"); flint_printf("%d %d %d %d\n", i, j, k, l); abort(); } fmpz_mul_si(il, il, i); fmpz_mul_si(jl, jl, j); fmpz_mul_si(kl, kl, k); } fmpz_poly_power_sums(b, a, 4); fmpz_poly_power_sums_to_poly(c, b); result = fmpz_poly_equal(a, c); if (!result) { flint_printf("FAIL: newton series to poly\n\n"); fmpz_poly_print(a), flint_printf("\n\n"); fmpz_poly_print(b), flint_printf("\n\n"); fmpz_poly_print(c), flint_printf("\n\n"); } fmpz_clear(il); fmpz_clear(jl); fmpz_clear(kl); fmpz_clear(tot); fmpz_poly_clear(a); fmpz_poly_clear(b); fmpz_poly_clear(c); } /* Check that the various implementations coincide and that */ /* power_sums_to_poly gives back the original polynomial */ for (i = 0; i < 20 * flint_test_multiplier(); i++) { fmpz_poly_init(a); fmpz_poly_init(b); fmpz_poly_init(c); fmpz_poly_init(d); fmpz_poly_init(e); fmpz_poly_init(f); fmpz_poly_randtest_not_zero(a, state, 1 + n_randint(state, 50), 100); fmpz_poly_set_coeff_ui(a, fmpz_poly_degree(a), 1); for (n = -1; n < 3 * fmpz_poly_degree(a); n += 1 + n_randint(state, fmpz_poly_degree(a))) { fmpz_poly_power_sums(b, a, n); fmpz_poly_power_sums_naive(c, a, n); result = fmpz_poly_equal(b, c); if (!result) { flint_printf ("FAIL: equality power_sums, power_sums_naive\n"); flint_printf("%ld", n); fmpz_poly_print(a), flint_printf("\n\n"); abort(); } if (n >= 1) { /* use the formula PowerSums(p) = rev(poly') / rev(poly) */ fmpz_poly_reverse(e, a, fmpz_poly_length(a)); fmpz_poly_derivative(f, a); fmpz_poly_reverse(f, f, fmpz_poly_length(f)); fmpz_poly_div_series(d, f, e, n); result = fmpz_poly_equal(b, d); if (!result) { flint_printf("FAIL: equality with schoenhage formula\n"); flint_printf("%ld", n); fmpz_poly_print(a), flint_printf("\n\n"); abort(); } } } fmpz_poly_power_sums(b, a, fmpz_poly_length(a)); fmpz_poly_power_sums_to_poly(c, b); result = fmpz_poly_equal(a, c); if (!result) { flint_printf("FAIL: power_sums_to_poly\n"); fmpz_poly_print(a), flint_printf("\n\n"); fmpz_poly_print(b), flint_printf("\n\n"); fmpz_poly_print(c), flint_printf("\n\n"); } fmpz_poly_clear(a); fmpz_poly_clear(b); fmpz_poly_clear(c); fmpz_poly_clear(d); fmpz_poly_clear(e); fmpz_poly_clear(f); } /* Check that the product of polynomials correspond to the sum of Power sums series */ for (i = 0; i < 20 * flint_test_multiplier(); i++) { fmpz_poly_init(a); fmpz_poly_init(b); fmpz_poly_init(c); fmpz_poly_init(d); fmpz_poly_init(e); fmpz_poly_init(f); fmpz_poly_randtest_not_zero(a, state, 1 + n_randint(state, 5), 20); fmpz_poly_set_coeff_ui(a, fmpz_poly_degree(a), 1); fmpz_poly_randtest_not_zero(b, state, 1 + n_randint(state, 5), 20); fmpz_poly_set_coeff_ui(b, fmpz_poly_degree(b), 1); fmpz_poly_power_sums(c, a, 20); fmpz_poly_power_sums(d, b, 20); fmpz_poly_add(f, c, d); fmpz_poly_mul(e, a, b); fmpz_poly_power_sums(e, e, 20); result = fmpz_poly_equal(e, f); if (!result) { flint_printf("FAIL: PowerSums(p1 p2) = PowerSums(p1) + PowerSums(p2)\n"); fmpz_poly_print(a), flint_printf("\n"); fmpz_poly_print(b), flint_printf("\n"); fmpz_poly_print(c), flint_printf("\n"); fmpz_poly_print(d), flint_printf("\n"); fmpz_poly_print(e), flint_printf("\n"); fmpz_poly_print(f), flint_printf("\n"); abort(); } fmpz_poly_clear(a); fmpz_poly_clear(b); fmpz_poly_clear(c); fmpz_poly_clear(d); fmpz_poly_clear(e); fmpz_poly_clear(f); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }