/*
Copyright (C) 2016 Vincent Delecroix
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "fmpz.h"
#include "fmpz_poly.h"
int
main(void)
{
int i, j, k, l, result;
fmpz_t il, jl, kl, tot;
slong n;
fmpz_poly_t a, b, c, d, e, f;
FLINT_TEST_INIT(state);
flint_printf("power_sums....");
/* Check that it is valid in degree 3 with integer roots, ie */
/* for polynomials of the form (x-i)(x-j)(x-k) */
for (i = -5; i < 5; i++)
for (j = i; j < 5; j++)
for (k = j; k < 5; k++)
{
fmpz_poly_init(a);
fmpz_poly_init(b);
fmpz_poly_init(c);
fmpz_poly_set_coeff_si(a, 0, -i * j * k);
fmpz_poly_set_coeff_si(a, 1, i * j + i * k + j * k);
fmpz_poly_set_coeff_si(a, 2, -i - j - k);
fmpz_poly_set_coeff_si(a, 3, 1);
fmpz_poly_power_sums(b, a, 20);
fmpz_poly_power_sums_naive(c, a, 20);
result = fmpz_poly_equal(b, c);
if (!result)
{
flint_printf("FAIL:\n");
flint_printf("%d %d %d\n\n", i, j, k);
fmpz_poly_print(b), flint_printf("\n\n");
fmpz_poly_print(c), flint_printf("\n\n");
abort();
}
fmpz_init(il);
fmpz_init(jl);
fmpz_init(kl);
fmpz_set_ui(il, 1);
fmpz_set_ui(jl, 1);
fmpz_set_ui(kl, 1);
fmpz_init(tot);
for (l = 0; l < FLINT_MIN(20, fmpz_poly_length(b)); l++)
{
fmpz_set(tot, il);
fmpz_add(tot, tot, jl);
fmpz_add(tot, tot, kl);
result = fmpz_equal(fmpz_poly_get_coeff_ptr(b, l), tot);
if (!result)
{
flint_printf("FAIL:\n\n");
flint_printf("%d %d %d %d\n", i, j, k, l);
abort();
}
fmpz_mul_si(il, il, i);
fmpz_mul_si(jl, jl, j);
fmpz_mul_si(kl, kl, k);
}
fmpz_poly_power_sums(b, a, 4);
fmpz_poly_power_sums_to_poly(c, b);
result = fmpz_poly_equal(a, c);
if (!result)
{
flint_printf("FAIL: newton series to poly\n\n");
fmpz_poly_print(a), flint_printf("\n\n");
fmpz_poly_print(b), flint_printf("\n\n");
fmpz_poly_print(c), flint_printf("\n\n");
}
fmpz_clear(il);
fmpz_clear(jl);
fmpz_clear(kl);
fmpz_clear(tot);
fmpz_poly_clear(a);
fmpz_poly_clear(b);
fmpz_poly_clear(c);
}
/* Check that the various implementations coincide and that */
/* power_sums_to_poly gives back the original polynomial */
for (i = 0; i < 20 * flint_test_multiplier(); i++)
{
fmpz_poly_init(a);
fmpz_poly_init(b);
fmpz_poly_init(c);
fmpz_poly_init(d);
fmpz_poly_init(e);
fmpz_poly_init(f);
fmpz_poly_randtest_not_zero(a, state, 1 + n_randint(state, 50), 100);
fmpz_poly_set_coeff_ui(a, fmpz_poly_degree(a), 1);
for (n = -1; n < 3 * fmpz_poly_degree(a);
n += 1 + n_randint(state, fmpz_poly_degree(a)))
{
fmpz_poly_power_sums(b, a, n);
fmpz_poly_power_sums_naive(c, a, n);
result = fmpz_poly_equal(b, c);
if (!result)
{
flint_printf
("FAIL: equality power_sums, power_sums_naive\n");
flint_printf("%ld", n);
fmpz_poly_print(a), flint_printf("\n\n");
abort();
}
if (n >= 1)
{
/* use the formula PowerSums(p) = rev(poly') / rev(poly) */
fmpz_poly_reverse(e, a, fmpz_poly_length(a));
fmpz_poly_derivative(f, a);
fmpz_poly_reverse(f, f, fmpz_poly_length(f));
fmpz_poly_div_series(d, f, e, n);
result = fmpz_poly_equal(b, d);
if (!result)
{
flint_printf("FAIL: equality with schoenhage formula\n");
flint_printf("%ld", n);
fmpz_poly_print(a), flint_printf("\n\n");
abort();
}
}
}
fmpz_poly_power_sums(b, a, fmpz_poly_length(a));
fmpz_poly_power_sums_to_poly(c, b);
result = fmpz_poly_equal(a, c);
if (!result)
{
flint_printf("FAIL: power_sums_to_poly\n");
fmpz_poly_print(a), flint_printf("\n\n");
fmpz_poly_print(b), flint_printf("\n\n");
fmpz_poly_print(c), flint_printf("\n\n");
}
fmpz_poly_clear(a);
fmpz_poly_clear(b);
fmpz_poly_clear(c);
fmpz_poly_clear(d);
fmpz_poly_clear(e);
fmpz_poly_clear(f);
}
/* Check that the product of polynomials correspond to the sum of Power sums series */
for (i = 0; i < 20 * flint_test_multiplier(); i++)
{
fmpz_poly_init(a);
fmpz_poly_init(b);
fmpz_poly_init(c);
fmpz_poly_init(d);
fmpz_poly_init(e);
fmpz_poly_init(f);
fmpz_poly_randtest_not_zero(a, state, 1 + n_randint(state, 5), 20);
fmpz_poly_set_coeff_ui(a, fmpz_poly_degree(a), 1);
fmpz_poly_randtest_not_zero(b, state, 1 + n_randint(state, 5), 20);
fmpz_poly_set_coeff_ui(b, fmpz_poly_degree(b), 1);
fmpz_poly_power_sums(c, a, 20);
fmpz_poly_power_sums(d, b, 20);
fmpz_poly_add(f, c, d);
fmpz_poly_mul(e, a, b);
fmpz_poly_power_sums(e, e, 20);
result = fmpz_poly_equal(e, f);
if (!result)
{
flint_printf("FAIL: PowerSums(p1 p2) = PowerSums(p1) + PowerSums(p2)\n");
fmpz_poly_print(a), flint_printf("\n");
fmpz_poly_print(b), flint_printf("\n");
fmpz_poly_print(c), flint_printf("\n");
fmpz_poly_print(d), flint_printf("\n");
fmpz_poly_print(e), flint_printf("\n");
fmpz_poly_print(f), flint_printf("\n");
abort();
}
fmpz_poly_clear(a);
fmpz_poly_clear(b);
fmpz_poly_clear(c);
fmpz_poly_clear(d);
fmpz_poly_clear(e);
fmpz_poly_clear(f);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}