/*
Copyright (C) 2009 William Hart
Copyright (C) 2010 Sebastian Pancratz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include
#include "flint.h"
#include "fmpz.h"
#include "fmpz_poly.h"
#include "ulong_extras.h"
int
main(void)
{
int i, j, result;
FLINT_TEST_INIT(state);
flint_printf("signature....");
fflush(stdout);
for (i = 0; i < 50 * flint_test_multiplier(); i++)
{
fmpz_poly_t poly, linear, quadratic, rem;
fmpz_t lhs, rhs;
slong nreal, ncomplex, nreal_max, ncomplex_max, r1, r2;
slong len = n_randint(state, 20) + 1;
flint_bitcnt_t bits = n_randint(state, 50) + 1;
fmpz_poly_init2(poly, len);
fmpz_poly_init2(linear, 2);
fmpz_poly_init2(quadratic, 3);
fmpz_poly_init2(rem, len);
linear->length = 2;
quadratic->length = 3;
fmpz_init(lhs);
fmpz_init(rhs);
ncomplex_max = n_randint(state, len) / 2;
nreal_max = len - 2 * ncomplex_max;
ncomplex = 0;
nreal = 0;
fmpz_poly_set_coeff_si(poly, 0, 1);
for (j = 0; j < ncomplex_max; j++)
{
fmpz * a = quadratic->coeffs + 2;
fmpz * b = quadratic->coeffs + 1;
fmpz * c = quadratic->coeffs;
/* Form a quadratic polynomial with complex roots: b^2 < 4ac */
fmpz_randtest_not_zero(c, state, bits);
fmpz_randtest(b, state, bits);
fmpz_randtest_unsigned(a, state, bits);
if (fmpz_sgn(c) < 0)
{
fmpz_neg(c, c);
fmpz_neg(b, b);
}
fmpz_mul_ui(rhs, c, 4);
fmpz_mul(lhs, b, b);
fmpz_add(lhs, lhs, rhs);
fmpz_fdiv_q(lhs, lhs, rhs);
fmpz_add(a, a, lhs);
/* If quadratic does not divide poly over Q, set poly *= complex */
fmpz_poly_pseudo_rem_cohen(rem, poly, quadratic);
if (rem->length > 0)
{
fmpz_poly_mul(poly, poly, quadratic);
ncomplex++;
}
}
for (j = 0; j < nreal_max; j++)
{
/* Form a linear polynomial */
fmpz_randtest(linear->coeffs, state, bits);
fmpz_randtest_not_zero(linear->coeffs + 1, state, bits);
/* If linear does not divide poly over Q, set poly *= linear */
fmpz_poly_pseudo_rem_cohen(rem, poly, linear);
if (rem->length > 0)
{
fmpz_poly_mul(poly, poly, linear);
nreal++;
}
}
fmpz_poly_signature(&r1, &r2, poly);
result = ((r1 == nreal) && (r2 == ncomplex));
if (!result)
{
flint_printf("FAIL:\n");
flint_printf("poly = "), fmpz_poly_print(poly), flint_printf("\n\n");
flint_printf("r1 r2 = %wd %wd\n\n", r1, r2);
abort();
}
fmpz_poly_clear(poly);
fmpz_poly_clear(linear);
fmpz_poly_clear(quadratic);
fmpz_poly_clear(rem);
fmpz_clear(lhs);
fmpz_clear(rhs);
}
{
fmpz_poly_t poly;
slong r1, r2;
fmpz_poly_init(poly);
fmpz_poly_set_str(poly, "6 1 1 1 10 5 1");
fmpz_poly_signature(&r1, &r2, poly);
result = ((r1 == 1) && (r2 == 2));
if (!result)
{
flint_printf("FAIL:\n");
flint_printf("poly = "), fmpz_poly_print(poly), flint_printf("\n\n");
flint_printf("r1 r2 = %wd %wd\n\n", r1, r2);
abort();
}
fmpz_poly_clear(poly);
}
for (i = 0; i < 50; i++)
{
slong r, s;
fmpz_poly_t poly;
fmpz_poly_init(poly);
fmpz_poly_cyclotomic(poly, i + 3);
fmpz_poly_signature(&r, &s, poly);
result = (r == 0 && s == (fmpz_poly_length(poly) - 1)/2);
if (!result)
{
flint_printf("FAIL:\n");
flint_printf("Cyclotomic(%ld) has signature (%ld, %ld)\n", i + 3, r, s);
flint_printf("Expected signature (%ld, %ld)\n", 0, (fmpz_poly_length(poly) - 1)/2);
abort();
}
fmpz_poly_clear(poly);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}