/* Copyright (C) 2009 William Hart Copyright (C) 2010 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_poly.h" #include "ulong_extras.h" int main(void) { int i, j, result; FLINT_TEST_INIT(state); flint_printf("signature...."); fflush(stdout); for (i = 0; i < 50 * flint_test_multiplier(); i++) { fmpz_poly_t poly, linear, quadratic, rem; fmpz_t lhs, rhs; slong nreal, ncomplex, nreal_max, ncomplex_max, r1, r2; slong len = n_randint(state, 20) + 1; flint_bitcnt_t bits = n_randint(state, 50) + 1; fmpz_poly_init2(poly, len); fmpz_poly_init2(linear, 2); fmpz_poly_init2(quadratic, 3); fmpz_poly_init2(rem, len); linear->length = 2; quadratic->length = 3; fmpz_init(lhs); fmpz_init(rhs); ncomplex_max = n_randint(state, len) / 2; nreal_max = len - 2 * ncomplex_max; ncomplex = 0; nreal = 0; fmpz_poly_set_coeff_si(poly, 0, 1); for (j = 0; j < ncomplex_max; j++) { fmpz * a = quadratic->coeffs + 2; fmpz * b = quadratic->coeffs + 1; fmpz * c = quadratic->coeffs; /* Form a quadratic polynomial with complex roots: b^2 < 4ac */ fmpz_randtest_not_zero(c, state, bits); fmpz_randtest(b, state, bits); fmpz_randtest_unsigned(a, state, bits); if (fmpz_sgn(c) < 0) { fmpz_neg(c, c); fmpz_neg(b, b); } fmpz_mul_ui(rhs, c, 4); fmpz_mul(lhs, b, b); fmpz_add(lhs, lhs, rhs); fmpz_fdiv_q(lhs, lhs, rhs); fmpz_add(a, a, lhs); /* If quadratic does not divide poly over Q, set poly *= complex */ fmpz_poly_pseudo_rem_cohen(rem, poly, quadratic); if (rem->length > 0) { fmpz_poly_mul(poly, poly, quadratic); ncomplex++; } } for (j = 0; j < nreal_max; j++) { /* Form a linear polynomial */ fmpz_randtest(linear->coeffs, state, bits); fmpz_randtest_not_zero(linear->coeffs + 1, state, bits); /* If linear does not divide poly over Q, set poly *= linear */ fmpz_poly_pseudo_rem_cohen(rem, poly, linear); if (rem->length > 0) { fmpz_poly_mul(poly, poly, linear); nreal++; } } fmpz_poly_signature(&r1, &r2, poly); result = ((r1 == nreal) && (r2 == ncomplex)); if (!result) { flint_printf("FAIL:\n"); flint_printf("poly = "), fmpz_poly_print(poly), flint_printf("\n\n"); flint_printf("r1 r2 = %wd %wd\n\n", r1, r2); abort(); } fmpz_poly_clear(poly); fmpz_poly_clear(linear); fmpz_poly_clear(quadratic); fmpz_poly_clear(rem); fmpz_clear(lhs); fmpz_clear(rhs); } { fmpz_poly_t poly; slong r1, r2; fmpz_poly_init(poly); fmpz_poly_set_str(poly, "6 1 1 1 10 5 1"); fmpz_poly_signature(&r1, &r2, poly); result = ((r1 == 1) && (r2 == 2)); if (!result) { flint_printf("FAIL:\n"); flint_printf("poly = "), fmpz_poly_print(poly), flint_printf("\n\n"); flint_printf("r1 r2 = %wd %wd\n\n", r1, r2); abort(); } fmpz_poly_clear(poly); } for (i = 0; i < 50; i++) { slong r, s; fmpz_poly_t poly; fmpz_poly_init(poly); fmpz_poly_cyclotomic(poly, i + 3); fmpz_poly_signature(&r, &s, poly); result = (r == 0 && s == (fmpz_poly_length(poly) - 1)/2); if (!result) { flint_printf("FAIL:\n"); flint_printf("Cyclotomic(%ld) has signature (%ld, %ld)\n", i + 3, r, s); flint_printf("Expected signature (%ld, %ld)\n", 0, (fmpz_poly_length(poly) - 1)/2); abort(); } fmpz_poly_clear(poly); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }