/* Copyright (C) 2011 William Hart Copyright (C) 2011 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" #include "mpn_extras.h" void _fmpz_poly_xgcd_modular(fmpz_t r, fmpz * s, fmpz * t, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2) { mp_ptr G, S, T, A, B, T1, T2; fmpz_t prod; int stabilised = 0, first; mp_limb_t p; flint_bitcnt_t s_bits = 0, t_bits = 0; /* Compute resultant of input polys */ _fmpz_poly_resultant(r, poly1, len1, poly2, len2); if (fmpz_is_zero(r)) return; fmpz_init(prod); fmpz_one(prod); _fmpz_vec_zero(s, len2); _fmpz_vec_zero(t, len1); p = (UWORD(1) << (FLINT_BITS - 1)); G = _nmod_vec_init(4 * len1 + 5 * len2 - 2); S = G + len2; T = S + len2; A = T + len1; B = A + len1; T1 = B + len2; T2 = T1 + (len1 + len2 - 1); _nmod_vec_zero(S, len2 + len1); /* S = T = 0 */ first = 1; for (;;) { mp_limb_t R; nmod_t mod; /* Get next prime */ p = n_nextprime(p, 0); /* Resultant mod p */ R = fmpz_fdiv_ui(r, p); /* If p divides resultant or either leading coeff, discard p */ if ((fmpz_fdiv_ui(poly1 + len1 - 1, p) == WORD(0)) || (fmpz_fdiv_ui(poly2 + len2 - 1, p) == WORD(0)) || (R == 0)) continue; nmod_init(&mod, p); /* Reduce polynomials modulo p */ _fmpz_vec_get_nmod_vec(A, poly1, len1, mod); _fmpz_vec_get_nmod_vec(B, poly2, len2, mod); if (stabilised) /* CRT has stabilised, probably don't need more xgcds */ { slong tlen; /* Multiply out A*S + B*T to see if it is R mod p */ _fmpz_vec_get_nmod_vec(S, s, len2, mod); _fmpz_vec_get_nmod_vec(T, t, len1, mod); _nmod_poly_mul(T1, A, len1, S, len2, mod); _nmod_poly_mul(T2, T, len1, B, len2, mod); _nmod_vec_add(T1, T1, T2, len1 + len2 - 1, mod); tlen = len1 + len2 - 1; FMPZ_VEC_NORM(T1, tlen); if (tlen == 1 && T1[0] == R) /* It is, so this prime is good */ fmpz_mul_ui(prod, prod, p); else stabilised = 0; /* It's not, keep going with xgcds */ } if (!stabilised) /* Need to keep computing xgcds mod p */ { mp_limb_t RGinv; /* Compute xgcd mod p */ _nmod_poly_xgcd(G, S, T, A, len1, B, len2, mod); RGinv = n_invmod(G[0], mod.n); RGinv = n_mulmod2_preinv(RGinv, R, mod.n, mod.ninv); /* Scale appropriately */ _nmod_vec_scalar_mul_nmod(S, S, len2, RGinv, mod); _nmod_vec_scalar_mul_nmod(T, T, len1, RGinv, mod); if (first) /* First time around set s and t to S and T */ { _fmpz_vec_set_nmod_vec(s, S, len2, mod); _fmpz_vec_set_nmod_vec(t, T, len1, mod); fmpz_set_ui(prod, p); stabilised = 1; /* Optimise the case where one prime is enough */ first = 0; } else /* Otherwise do CRT */ { flint_bitcnt_t new_s_bits, new_t_bits; _fmpz_poly_CRT_ui(s, s, len2, prod, S, len2, mod.n, mod.ninv, 1); _fmpz_poly_CRT_ui(t, t, len1, prod, T, len1, mod.n, mod.ninv, 1); fmpz_mul_ui(prod, prod, p); /* Check to see if CRT has stabilised */ new_s_bits = FLINT_ABS(_fmpz_vec_max_bits(s, len2)); new_t_bits = FLINT_ABS(_fmpz_vec_max_bits(t, len1)); stabilised = (s_bits == new_s_bits && t_bits == new_t_bits); s_bits = new_s_bits; t_bits = new_t_bits; } } if (stabilised) { slong bound1, bound2, bound; bound1 = FLINT_BIT_COUNT(len2) + FLINT_ABS(_fmpz_vec_max_bits(poly1, len1)) + FLINT_ABS(_fmpz_vec_max_bits(s, len2)); bound2 = FLINT_BIT_COUNT(len2) + FLINT_ABS(_fmpz_vec_max_bits(poly2, len2)) + FLINT_ABS(_fmpz_vec_max_bits(t, len1)); bound = 4 + FLINT_MAX(fmpz_bits(r), FLINT_MAX(bound1, bound2)); if (fmpz_bits(prod) > bound) break; } } _nmod_vec_clear(G); fmpz_clear(prod); } void fmpz_poly_xgcd_modular(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t, const fmpz_poly_t poly1, const fmpz_poly_t poly2) { if (poly1->length < poly2->length) { fmpz_poly_xgcd_modular(r, t, s, poly2, poly1); } else /* len1 >= len2 >= 0 */ { const slong len1 = poly1->length; const slong len2 = poly2->length; fmpz *S, *T; fmpz_poly_t temp1, temp2; if (len1 == 0 || len2 == 0) { fmpz_zero(r); } else /* len1 >= len2 >= 1 */ { if (s == poly1 || s == poly2) { fmpz_poly_init2(temp1, len2); S = temp1->coeffs; } else { fmpz_poly_fit_length(s, len2); S = s->coeffs; } if (t == poly1 || t == poly2) { fmpz_poly_init2(temp2, len1); T = temp2->coeffs; } else { fmpz_poly_fit_length(t, len1); T = t->coeffs; } _fmpz_poly_xgcd_modular(r, S, T, poly1->coeffs, len1, poly2->coeffs, len2); if (s == poly1 || s == poly2) { fmpz_poly_swap(s, temp1); fmpz_poly_clear(temp1); } if (t == poly1 || t == poly2) { fmpz_poly_swap(t, temp2); fmpz_poly_clear(temp2); } _fmpz_poly_set_length(s, len2); _fmpz_poly_normalise(s); _fmpz_poly_set_length(t, len1); _fmpz_poly_normalise(t); } } }