/*
Copyright (C) 2011 Andy Novocin
Copyright (C) 2011 Sebastian Pancratz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "fmpz_poly.h"
#define TRACE_ZASSENHAUS 0
/*
Let $f$ be a polynomial of degree $m = \deg(f) \geq 2$.
If another polynomial $g$ divides $f$ then, for all
$0 \leq j \leq \deg(g)$,
\begin{equation*}
\abs{b_j} \leq \binom{n-1}{j} \abs{f} + \binom{n-1}{j-1} \abs{a_m}
\end{equation*}
where $\abs{f}$ denotes the $2$-norm of $f$. This bound
is due to Mignotte, see e.g., Cohen p.\ 134.
This function sets $B$ such that, for all $0 \leq j \leq \deg(g)$,
$\abs{b_j} \leq B$.
Consequently, when proceeding with Hensel lifting, we
proceed to choose an $a$ such that $p^a \geq 2 B + 1$,
e.g., $a = \ceil{\log_p(2B + 1)}$.
Note that the formula degenerates for $j = 0$ and $j = n$
and so in this case we use that the leading (resp.\ constant)
term of $g$ divides the leading (resp.\ constant) term of $f$.
*/
void _fmpz_poly_factor_mignotte(fmpz_t B, const fmpz *f, slong m)
{
slong j;
fmpz_t b, f2, lc, s, t;
fmpz_init(b);
fmpz_init(f2);
fmpz_init(lc);
fmpz_init(s);
fmpz_init(t);
for (j = 0; j <= m; j++)
fmpz_addmul(f2, f + j, f + j);
fmpz_sqrt(f2, f2);
fmpz_add_ui(f2, f2, 1);
fmpz_abs(lc, f + m);
fmpz_abs(B, f + 0);
/* We have $b = \binom{m-1}{j-1}$ on loop entry and
$b = \binom{m-1}{j}$ on exit. */
fmpz_set_ui(b, m-1);
for (j = 1; j < m; j++)
{
fmpz_mul(t, b, lc);
fmpz_mul_ui(b, b, m - j);
fmpz_divexact_ui(b, b, j);
fmpz_mul(s, b, f2);
fmpz_add(s, s, t);
if (fmpz_cmp(B, s) < 0)
fmpz_set(B, s);
}
if (fmpz_cmp(B, lc) < 0)
fmpz_set(B, lc);
fmpz_clear(b);
fmpz_clear(f2);
fmpz_clear(lc);
fmpz_clear(s);
fmpz_clear(t);
}
void fmpz_poly_factor_mignotte(fmpz_t B, const fmpz_poly_t f)
{
_fmpz_poly_factor_mignotte(B, f->coeffs, f->length - 1);
}
void _fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t final_fac,
slong exp, const fmpz_poly_t f, slong cutoff, int use_van_hoeij)
{
const slong lenF = f->length;
#if TRACE_ZASSENHAUS == 1
flint_printf("\n[Zassenhaus]\n");
flint_printf("|f = "), fmpz_poly_print(f), flint_printf("\n");
#endif
if (lenF < 5)
{
if (lenF < 3)
fmpz_poly_factor_insert(final_fac, f, exp);
else if (lenF == 3)
_fmpz_poly_factor_quadratic(final_fac, f, exp);
else
_fmpz_poly_factor_cubic(final_fac, f, exp);
return;
}
else
{
slong i, j;
slong r = lenF;
mp_limb_t p = 2;
nmod_poly_t d, g, t;
nmod_poly_factor_t fac;
zassenhaus_prune_t Z;
zassenhaus_prune_init(Z);
nmod_poly_factor_init(fac);
nmod_poly_init_preinv(t, 1, 0);
nmod_poly_init_preinv(d, 1, 0);
nmod_poly_init_preinv(g, 1, 0);
zassenhaus_prune_set_degree(Z, lenF - 1);
for (i = 0; i < 3; i++)
{
for ( ; ; p = n_nextprime(p, 0))
{
nmod_t mod;
nmod_init(&mod, p);
d->mod = mod;
g->mod = mod;
t->mod = mod;
fmpz_poly_get_nmod_poly(t, f);
if (t->length == lenF && t->coeffs[0] != 0)
{
nmod_poly_derivative(d, t);
nmod_poly_gcd(g, t, d);
if (nmod_poly_is_one(g))
{
nmod_poly_factor_t temp_fac;
nmod_poly_factor_init(temp_fac);
nmod_poly_factor(temp_fac, t);
zassenhaus_prune_start_add_factors(Z);
for (j = 0; j < temp_fac->num; j++)
zassenhaus_prune_add_factor(Z,
temp_fac->p[j].length - 1, temp_fac->exp[j]);
zassenhaus_prune_end_add_factors(Z);
if (temp_fac->num <= r)
{
r = temp_fac->num;
nmod_poly_factor_set(fac, temp_fac);
}
nmod_poly_factor_clear(temp_fac);
break;
}
}
}
p = n_nextprime(p, 0);
}
nmod_poly_clear(d);
nmod_poly_clear(g);
nmod_poly_clear(t);
p = (fac->p + 0)->mod.n;
if (r == 1 && r <= cutoff)
{
fmpz_poly_factor_insert(final_fac, f, exp);
}
else if (r > cutoff && use_van_hoeij)
{
fmpz_poly_factor_van_hoeij(final_fac, fac, f, exp, p);
}
else
{
slong a;
fmpz_t T;
fmpz_poly_factor_t lifted_fac;
fmpz_poly_factor_init(lifted_fac);
fmpz_init(T);
fmpz_poly_factor_mignotte(T, f);
/*
bound adjustment, we multiply true factors (which might be
monic) by the leading coefficient of f in the implementation
below
*/
fmpz_mul(T, T, f->coeffs + f->length - 1);
fmpz_abs(T, T);
fmpz_mul_ui(T, T, 2);
fmpz_add_ui(T, T, 1);
a = fmpz_clog_ui(T, p);
fmpz_poly_hensel_lift_once(lifted_fac, f, fac, a);
#if TRACE_ZASSENHAUS == 1
flint_printf("|p = %wd, a = %wd\n", p, a);
flint_printf("|Pre hensel lift factorisation (nmod_poly):\n");
nmod_poly_factor_print(fac);
flint_printf("|Post hensel lift factorisation (fmpz_poly):\n");
fmpz_poly_factor_print(lifted_fac);
#endif
fmpz_set_ui(T, p);
fmpz_pow_ui(T, T, a);
fmpz_poly_factor_zassenhaus_recombination_with_prune(
final_fac, lifted_fac, f, T, exp, Z);
fmpz_poly_factor_clear(lifted_fac);
fmpz_clear(T);
}
nmod_poly_factor_clear(fac);
zassenhaus_prune_clear(Z);
}
}
void fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t fac, const fmpz_poly_t G)
{
const slong lenG = G->length;
fmpz_poly_t g;
if (lenG == 0)
{
fmpz_set_ui(&fac->c, 0);
return;
}
if (lenG == 1)
{
fmpz_set(&fac->c, G->coeffs);
return;
}
fmpz_poly_init(g);
if (lenG == 2)
{
fmpz_poly_content(&fac->c, G);
if (fmpz_sgn(fmpz_poly_lead(G)) < 0)
fmpz_neg(&fac->c, &fac->c);
fmpz_poly_scalar_divexact_fmpz(g, G, &fac->c);
fmpz_poly_factor_insert(fac, g, 1);
}
else
{
slong j, k;
fmpz_poly_factor_t sq_fr_fac;
/* Does a presearch for a factor of form x^k */
for (k = 0; fmpz_is_zero(G->coeffs + k); k++) ;
if (k != 0)
{
fmpz_poly_t t;
fmpz_poly_init(t);
fmpz_poly_set_coeff_ui(t, 1, 1);
fmpz_poly_factor_insert(fac, t, k);
fmpz_poly_clear(t);
}
fmpz_poly_shift_right(g, G, k);
/* Could make other tests for x-1 or simple things
maybe take advantage of the composition algorithm */
fmpz_poly_factor_init(sq_fr_fac);
fmpz_poly_factor_squarefree(sq_fr_fac, g);
fmpz_set(&fac->c, &sq_fr_fac->c);
/* Factor each square-free part */
for (j = 0; j < sq_fr_fac->num; j++)
{
_fmpz_poly_factor_zassenhaus(fac, sq_fr_fac->exp[j],
sq_fr_fac->p + j, WORD_MAX, 0);
}
fmpz_poly_factor_clear(sq_fr_fac);
}
fmpz_poly_clear(g);
}
#undef TRACE_ZASSENHAUS