/* Copyright (C) 2010, 2011 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpq_poly.h" #include "fmpz_poly_q.h" void fmpz_poly_q_sub_in_place(fmpz_poly_q_t rop, const fmpz_poly_q_t op) { if (rop == op) { fmpz_poly_q_zero(rop); return; } fmpz_poly_q_neg(rop, rop); fmpz_poly_q_add_in_place(rop, op); fmpz_poly_q_neg(rop, rop); } void fmpz_poly_q_sub(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2) { fmpz_poly_t d, r2, s2; if (fmpz_poly_is_zero(op1->num)) { fmpz_poly_q_neg(rop, op2); return; } if (fmpz_poly_is_zero(op2->num)) { fmpz_poly_q_set(rop, op1); return; } if (op1 == op2) { fmpz_poly_q_zero(rop); return; } if (rop == op1) { fmpz_poly_q_sub_in_place(rop, op2); return; } if (rop == op2) { fmpz_poly_q_sub_in_place(rop, op1); fmpz_poly_q_neg(rop, rop); return; } /* From here on, we know that rop, op1 and op2 refer to distinct objects in memory, although as rational functions they may still be equal XXX: Do not maintain the remaining part of the function separately!!! Instead, note that this is very similar to the corresponding part of the summation code. */ /* Polynomials? */ if (fmpz_poly_length(op1->den) == 1 && fmpz_poly_length(op2->den) == 1) { const slong len1 = fmpz_poly_length(op1->num); const slong len2 = fmpz_poly_length(op2->num); fmpz_poly_fit_length(rop->num, FLINT_MAX(len1, len2)); _fmpq_poly_sub(rop->num->coeffs, rop->den->coeffs, op1->num->coeffs, op1->den->coeffs, len1, op2->num->coeffs, op2->den->coeffs, len2); _fmpz_poly_set_length(rop->num, FLINT_MAX(len1, len2)); _fmpz_poly_set_length(rop->den, 1); _fmpz_poly_normalise(rop->num); return; } /* Denominators equal to one? */ if (fmpz_poly_is_one(op1->den)) { fmpz_poly_mul(rop->num, op1->num, op2->den); fmpz_poly_sub(rop->num, rop->num, op2->num); fmpz_poly_set(rop->den, op2->den); return; } if (fmpz_poly_is_one(op2->den)) { fmpz_poly_mul(rop->num, op2->num, op1->den); fmpz_poly_sub(rop->num, op1->num, rop->num); fmpz_poly_set(rop->den, op1->den); return; } /* Henrici's algorithm for summation in quotient fields */ /* We begin by using rop->num as a temporary variable for the gcd of the two denominators' greatest common divisor */ fmpz_poly_gcd(rop->num, op1->den, op2->den); if (fmpz_poly_is_one(rop->num)) { fmpz_poly_mul(rop->num, op1->num, op2->den); fmpz_poly_mul(rop->den, op1->den, op2->num); /* Using rop->den as temp */ fmpz_poly_sub(rop->num, rop->num, rop->den); fmpz_poly_mul(rop->den, op1->den, op2->den); } else { /* We now copy rop->num into a new variable d, so we no longer need rop->num as a temporary variable */ fmpz_poly_init(d); fmpz_poly_swap(d, rop->num); fmpz_poly_init(r2); fmpz_poly_init(s2); fmpz_poly_div(r2, op1->den, d); /* +ve leading coeff */ fmpz_poly_div(s2, op2->den, d); /* +ve leading coeff */ fmpz_poly_mul(rop->num, op1->num, s2); fmpz_poly_mul(rop->den, op2->num, r2); /* Using rop->den as temp */ fmpz_poly_sub(rop->num, rop->num, rop->den); if (fmpz_poly_degree(rop->num) < 0) { fmpz_poly_zero(rop->den); fmpz_poly_set_coeff_si(rop->den, 0, 1); } else { fmpz_poly_mul(rop->den, op1->den, s2); fmpz_poly_gcd(r2, rop->num, d); if (!fmpz_poly_is_one(r2)) { fmpz_poly_div(rop->num, rop->num, r2); fmpz_poly_div(rop->den, rop->den, r2); } } fmpz_poly_clear(d); fmpz_poly_clear(r2); fmpz_poly_clear(s2); } }