/* Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fq_nmod_mpoly.h" typedef struct { slong f; slong r; slong v_var; fmpz_t v_exp; /* will be managed as stack grows / shrinks */ int ret; } stack_entry_struct; typedef stack_entry_struct stack_entry_t[1]; /* A = A * X^pow */ static int _fq_nmod_mpoly_pmul(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t X, const fmpz_t pow, fq_nmod_mpoly_t T, const fq_nmod_mpoly_ctx_t ctx) { ulong p; FLINT_ASSERT(fmpz_sgn(pow) > 0); if (!fmpz_fits_si(pow)) { if (!fq_nmod_mpoly_pow_fmpz(T, X, pow, ctx)) { fq_nmod_mpoly_zero(A, ctx); return 0; } fq_nmod_mpoly_mul(A, A, T, ctx); return 1; } p = fmpz_get_ui(pow); if (X->length <= WORD(2) || A->length/p < X->length) { if (!fq_nmod_mpoly_pow_ui(T, X, p, ctx)) { fq_nmod_mpoly_zero(A, ctx); return 0; } fq_nmod_mpoly_mul(A, A, T, ctx); } else { while (p >= 1) { fq_nmod_mpoly_mul(T, A, X, ctx); fq_nmod_mpoly_swap(A, T, ctx); p--; } } return 1; } /* evaluate B(xbar) at xbar = C, */ int fq_nmod_mpoly_compose_fq_nmod_mpoly_horner(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, fq_nmod_mpoly_struct * const * C, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC) { int ret, success = 1; slong d = fq_nmod_ctx_degree(ctxB->fqctx); slong nvars = ctxB->minfo->nvars; slong i, j, k, cur, next, f, r, f_prev, r_prev, v; slong sp, rp; stack_entry_struct * stack; fq_nmod_mpoly_struct * regs; fq_nmod_mpoly_t temp; slong * rtypes; ulong totalcounts, maxcounts; ulong * counts; slong Blen = B->length; slong * Blist; const mp_limb_t * Bcoeffs = B->coeffs; ulong * Bexp = B->exps; flint_bitcnt_t Bbits = B->bits; slong BN = mpoly_words_per_exp(Bbits, ctxB->minfo); fmpz * Buexp; fmpz * mdegs; fmpz_t score, tz; TMP_INIT; if (Blen == 0) { fq_nmod_mpoly_zero(A, ctxAC); return 1; } FLINT_ASSERT(A != B); FLINT_ASSERT(Blen > 0); TMP_START; fmpz_init(score); fmpz_init(tz); /* unpack B exponents */ Buexp = _fmpz_vec_init(nvars*Blen); for (i = 0; i < Blen; i++) mpoly_get_monomial_ffmpz(Buexp + nvars*i, Bexp + BN*i, Bbits, ctxB->minfo); counts = (ulong *) TMP_ALLOC(nvars*sizeof(ulong)); mdegs = _fmpz_vec_init(nvars); /* stack */ sp = -WORD(1); /* start with empty stack */ stack = (stack_entry_struct *) TMP_ALLOC(nvars*(Blen + 1)*sizeof(stack_entry_struct)); Blist = (slong *) TMP_ALLOC(Blen*sizeof(slong)); /* registers of polynomials */ rp = 0; rtypes = (slong *) TMP_ALLOC((nvars + 1)*sizeof(slong)); regs = (fq_nmod_mpoly_struct *) TMP_ALLOC(nvars*sizeof(fq_nmod_mpoly_struct)); for (i = 0; i < nvars; i++) fq_nmod_mpoly_init(regs + i, ctxAC); fq_nmod_mpoly_init(temp, ctxAC); /* polynomials will be stored as link lists */ for (i = 0; i + 1 < Blen; i++) Blist[i] = i + 1; Blist[i] = -WORD(1); sp++; fmpz_init((stack + sp)->v_exp); (stack + sp)->ret = 0; (stack + sp)->f = 0; HornerForm: f = (stack + sp)->f; FLINT_ASSERT(f != -WORD(1)); /* f is not supposed to be zero */ /* obtain a count of the number of terms containing each variable */ for (i = 0; i < nvars; i++) { counts[i] = 0; fmpz_set_si(mdegs + i, -WORD(1)); } for (j = f; j != -WORD(1); j = Blist[j]) { for (i = 0; i < nvars; i++) { if (!fmpz_is_zero(Buexp + nvars*j + i )) { counts[i]++; if (fmpz_sgn(mdegs + i) < 0 || fmpz_cmp(mdegs + i, Buexp + nvars*j + i) > 0) { fmpz_set(mdegs + i, Buexp + nvars*j + i); } } } } totalcounts = 0; maxcounts = 0; v = -WORD(1); for (i = 0; i < nvars; i++) { maxcounts = FLINT_MAX(maxcounts, counts[i]); totalcounts += counts[i]; if (counts[i] != 0) v = i; } /* handle simple cases */ if (totalcounts == 0) { FLINT_ASSERT(Blist[f] == -WORD(1)); /* f should have had only one term */ rtypes[rp] = f; goto HornerFormReturn; } else if (totalcounts == 1) { FLINT_ASSERT(!fmpz_is_zero(Buexp + nvars*f + v)); /* this term should not be a scalar */ if (!fq_nmod_mpoly_pow_fmpz(regs + rp, C[v], Buexp + nvars*f + v, ctxAC)) { success = 0; } fq_nmod_mpoly_scalar_mul_n_fq(regs + rp, regs + rp, Bcoeffs + d*f, ctxAC); if (Blist[f] != -WORD(1)) /* if f has a second term */ { /* this term should be a scalar */ FLINT_ASSERT(fmpz_is_zero(Buexp + nvars*Blist[f] + v)); fq_nmod_mpoly_add_n_fq(regs + rp, regs + rp, Bcoeffs + d*Blist[f], ctxAC); } rtypes[rp] = -WORD(1); goto HornerFormReturn; } /* pick best power to pull out */ k = 0; if (maxcounts == 1) { fmpz_set_si(score, -WORD(1)); for (i = 0; i < nvars; i++) { if (counts[i] == 1 && (fmpz_sgn(score) < 0 || fmpz_cmp(mdegs + i, score) < 0)) { FLINT_ASSERT(fmpz_sgn(mdegs + i) > 0); fmpz_set(score, mdegs + i); k = i; } } } else { fmpz_zero(score); for (i = 0; i < nvars; i++) { if (counts[i] > 1) { FLINT_ASSERT(fmpz_sgn(mdegs + i) > 0); fmpz_mul_ui(tz, mdegs + i, counts[i] - 1); if (fmpz_cmp(tz, score) > 0) { fmpz_swap(score, tz); k = i; } } } } /* set variable power v */ (stack + sp)->v_var = k; fmpz_set((stack + sp)->v_exp, mdegs + k); /* scan f and split into q and v with f = q*v + r then set f = q */ r = -WORD(1); cur = f; f_prev = -WORD(1); r_prev = -WORD(1); while (cur != -WORD(1)) { next = Blist[cur]; if (fmpz_is_zero(Buexp + nvars*cur + k)) { if (f_prev == -WORD(1)) f = Blist[cur]; else Blist[f_prev] = Blist[cur]; if (r_prev == -WORD(1)) r = cur; else Blist[r_prev] = cur; Blist[cur] = -WORD(1); r_prev = cur; } else { /* mdegs[k] should be minimum non zero exponent */ fmpz_sub(Buexp + nvars*cur + k, Buexp + nvars*cur + k, mdegs + k); FLINT_ASSERT(fmpz_sgn(Buexp + nvars*cur + k) >= 0); f_prev = cur; } cur = next; } (stack + sp)->r = r; /* convert the quotient */ sp++; fmpz_init((stack + sp)->v_exp); (stack + sp)->ret = 1; (stack + sp)->f = f; goto HornerForm; HornerForm1: /* convert the remainder */ r = (stack + sp)->r; if (r != -WORD(1)) { /* remainder is non zero */ rp++; FLINT_ASSERT(0 <= rp && rp <= nvars); sp++; fmpz_init((stack + sp)->v_exp); (stack + sp)->ret = 2; (stack + sp)->f = r; goto HornerForm; HornerForm2: if (rtypes[rp - 1] == -WORD(1) && rtypes[rp] == -WORD(1)) { /* both quotient and remainder are polynomials */ if (!_fq_nmod_mpoly_pmul(regs + rp - 1, C[(stack + sp)->v_var], (stack + sp)->v_exp, temp, ctxAC)) { success = 0; } fq_nmod_mpoly_add(temp, regs + rp - 1, regs + rp, ctxAC); fq_nmod_mpoly_swap(temp, regs + rp - 1, ctxAC); } else if (rtypes[rp - 1] == -WORD(1) && rtypes[rp] != -WORD(1)) { /* quotient is a polynomial, remainder is a scalar */ if (!_fq_nmod_mpoly_pmul(regs + rp - 1, C[(stack + sp)->v_var], (stack + sp)->v_exp, temp, ctxAC)) { success = 0; } fq_nmod_mpoly_add_n_fq(regs + rp - 1, regs + rp - 1, Bcoeffs + d*rtypes[rp], ctxAC); } else if (rtypes[rp - 1] != -WORD(1) && rtypes[rp] == -WORD(1)) { /* quotient is a scalar, remainder is a polynomial */ if (!fq_nmod_mpoly_pow_fmpz(temp, C[(stack + sp)->v_var], (stack + sp)->v_exp, ctxAC)) { success = 0; } fq_nmod_mpoly_scalar_mul_n_fq(temp, temp, Bcoeffs + d*rtypes[rp - 1], ctxAC); fq_nmod_mpoly_add(regs + rp - 1, temp, regs + rp, ctxAC); } else { /* quotient is a scalar, remainder is a scalar */ FLINT_ASSERT(0); /* this should have been handled by simple case */ } rp--; FLINT_ASSERT(0 <= rp && rp <= nvars); } else { /* remainder is zero */ FLINT_ASSERT(rtypes[rp] == -WORD(1)); /* quotient is a scalar */ /* quotient is a polynomial */ if (!_fq_nmod_mpoly_pmul(regs + rp, C[(stack + sp)->v_var], (stack + sp)->v_exp, temp, ctxAC)) { success = 0; } } rtypes[rp] = -WORD(1); HornerFormReturn: if (!success) { while (sp >= 0) { fmpz_clear((stack + sp)->v_exp); sp--; } goto cleanup; } ret = (stack + sp)->ret; fmpz_clear((stack + sp)->v_exp); sp--; if (ret == 1) goto HornerForm1; if (ret == 2) goto HornerForm2; FLINT_ASSERT(rp == 0); FLINT_ASSERT(sp == -WORD(1)); if (rtypes[rp] == -WORD(1)) fq_nmod_mpoly_swap(A, regs + rp, ctxAC); else fq_nmod_mpoly_set_n_fq(A, Bcoeffs + d*rtypes[rp], ctxAC); cleanup: for (i = 0; i < nvars; i++) fq_nmod_mpoly_clear(regs + i, ctxAC); fq_nmod_mpoly_clear(temp, ctxAC); fmpz_clear(score); fmpz_clear(tz); _fmpz_vec_clear(mdegs, nvars); _fmpz_vec_clear(Buexp, nvars*Blen); TMP_END; return success; }