/* Copyright (C) 2019 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fq_nmod_mpoly.h" static int _fq_nmod_mpoly_div_monagan_pearce( fq_nmod_mpoly_t Q, const mp_limb_t * Acoeffs, const ulong * Aexps, slong Alen, const mp_limb_t * Bcoeffs, const ulong * Bexps, slong Blen, flint_bitcnt_t bits, slong N, const ulong * cmpmask, const fq_nmod_ctx_t fqctx) { slong d = fq_nmod_ctx_degree(fqctx); slong i, j, s; slong next_loc; slong heap_len = 2; /* heap zero index unused */ mpoly_heap_s * heap; mpoly_heap_t * chain; slong * store, * store_base; mpoly_heap_t * x; mp_limb_t * Qcoeffs = Q->coeffs; ulong * Qexps = Q->exps; slong Qlen; ulong * exp, * exps; ulong ** exp_list; slong exp_next; ulong mask; slong * hind; int lt_divides; mp_limb_t * lc_minus_inv, * pp; TMP_INIT; TMP_START; pp = (mp_limb_t *) TMP_ALLOC(d*sizeof(mp_limb_t)); lc_minus_inv = (mp_limb_t *) TMP_ALLOC(d*sizeof(mp_limb_t)); /* alloc array of heap nodes which can be chained together */ next_loc = Blen + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap_s *) TMP_ALLOC((Blen + 1)*sizeof(mpoly_heap_s)); chain = (mpoly_heap_t *) TMP_ALLOC(Blen*sizeof(mpoly_heap_t)); store = store_base = (slong *) TMP_ALLOC(2*Blen*sizeof(slong)); exps = (ulong *) TMP_ALLOC(Blen*N*sizeof(ulong)); exp_list = (ulong **) TMP_ALLOC(Blen*sizeof(ulong *)); exp = (ulong *) TMP_ALLOC(N*sizeof(ulong)); exp_next = 0; for (i = 0; i < Blen; i++) exp_list[i] = exps + i*N; hind = (slong *) TMP_ALLOC(Blen*sizeof(slong)); for (i = 0; i < Blen; i++) hind[i] = 1; mask = bits <= FLINT_BITS ? mpoly_overflow_mask_sp(bits) : 0; Qlen = 0; /* s is the number of terms * (latest quotient) we should put into heap */ s = Blen; /* insert (-1, 0, Aexps[0]) into heap */ x = chain + 0; x->i = -WORD(1); x->j = 0; x->next = NULL; heap[1].next = x; heap[1].exp = exp_list[exp_next++]; mpoly_monomial_set(heap[1].exp, Aexps, N); /* precompute leading cofficient info */ n_fq_inv(lc_minus_inv, Bcoeffs + d*0, fqctx); _n_fq_neg(lc_minus_inv, lc_minus_inv, d, fqctx->mod); while (heap_len > 1) { _fq_nmod_mpoly_fit_length(&Qcoeffs, &Q->coeffs_alloc, d, &Qexps, &Q->exps_alloc, N, Qlen + 1); mpoly_monomial_set(exp, heap[1].exp, N); if (bits <= FLINT_BITS) { if (mpoly_monomial_overflows(exp, N, mask)) goto exp_overflow; lt_divides = mpoly_monomial_divides(Qexps + N*Qlen, exp, Bexps, N, mask); } else { if (mpoly_monomial_overflows_mp(exp, N, bits)) goto exp_overflow; lt_divides = mpoly_monomial_divides_mp(Qexps + N*Qlen, exp, Bexps, N, bits); } _n_fq_zero(Qcoeffs + d*Qlen, d); do { exp_list[--exp_next] = heap[1].exp; x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask); do { *store++ = x->i; *store++ = x->j; if (x->i == -WORD(1)) { n_fq_sub(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, Acoeffs + d*x->j, fqctx); } else { hind[x->i] |= WORD(1); n_fq_mul(pp, Bcoeffs + d*x->i, Qcoeffs + d*x->j, fqctx); n_fq_add(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, pp, fqctx); } } while ((x = x->next) != NULL); } while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N)); /* process nodes taken from the heap */ while (store > store_base) { j = *--store; i = *--store; if (i == -WORD(1)) { /* take next dividend term */ if (j + 1 < Alen) { x = chain + 0; x->i = i; x->j = j + 1; x->next = NULL; mpoly_monomial_set(exp_list[exp_next], Aexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } else { /* should we go right? */ if ( (i + 1 < Blen) && (hind[i + 1] == 2*j + 1) ) { x = chain + i + 1; x->i = i + 1; x->j = j; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } /* should we go up? */ if (j + 1 == Qlen) { s++; } else if ( ((hind[i] & 1) == 1) && ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1)) ) { x = chain + i; x->i = i; x->j = j + 1; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } } if (_n_fq_is_zero(Qcoeffs + d*Qlen, d)) continue; if (!lt_divides) continue; n_fq_mul(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, lc_minus_inv, fqctx); /* put newly generated quotient term back into the heap if neccesary */ if (s > 1) { i = 1; x = chain + i; x->i = i; x->j = Qlen; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } s = 1; Qlen++; } Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = Qlen; TMP_END; return 1; exp_overflow: Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = 0; TMP_END; return 0; } void fq_nmod_mpoly_div_monagan_pearce( fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx) { slong N; flint_bitcnt_t Qbits; ulong * Aexps = A->exps, * Bexps = B->exps; ulong * cmpmask; int freeAexps = 0, freeBexps = 0; fq_nmod_mpoly_t TQ; fq_nmod_mpoly_struct * q; if (fq_nmod_mpoly_is_zero(B, ctx)) { flint_throw(FLINT_DIVZERO, "fq_nmod_mpoly_div_monagan_pearce: divide by zero"); } if (fq_nmod_mpoly_is_zero(A, ctx)) { fq_nmod_mpoly_zero(Q, ctx); return; } fq_nmod_mpoly_init(TQ, ctx); Qbits = FLINT_MAX(A->bits, B->bits); Qbits = mpoly_fix_bits(Qbits, ctx->minfo); N = mpoly_words_per_exp(Qbits, ctx->minfo); cmpmask = (ulong *) flint_malloc(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, Qbits, ctx->minfo); /* ensure input exponents packed to same size as output exponents */ if (Qbits > A->bits) { freeAexps = 1; Aexps = (ulong *) flint_malloc(N*A->length*sizeof(ulong)); mpoly_repack_monomials(Aexps, Qbits, A->exps, A->bits, A->length, ctx->minfo); } if (Qbits > B->bits) { freeBexps = 1; Bexps = (ulong *) flint_malloc(N*B->length*sizeof(ulong)); mpoly_repack_monomials(Bexps, Qbits, B->exps, B->bits, B->length, ctx->minfo); } /* check divisor leading monomial is at most that of the dividend */ if (mpoly_monomial_lt(Aexps, Bexps, N, cmpmask)) { fq_nmod_mpoly_zero(Q, ctx); goto cleanup; } /* take care of aliasing */ if (Q == A || Q == B) q = TQ; else q = Q; /* do division with remainder */ while (1) { fq_nmod_mpoly_fit_length_reset_bits(q, A->length/B->length + 1, Qbits, ctx); if (_fq_nmod_mpoly_div_monagan_pearce(q, A->coeffs, Aexps, A->length, B->coeffs, Bexps, B->length, Qbits, N, cmpmask, ctx->fqctx)) { break; } Qbits = mpoly_fix_bits(Qbits + 1, ctx->minfo); N = mpoly_words_per_exp(Qbits, ctx->minfo); cmpmask = (ulong *) flint_realloc(cmpmask, N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, Qbits, ctx->minfo); if (freeAexps) flint_free(Aexps); Aexps = (ulong *) flint_malloc(N*A->length*sizeof(ulong)); mpoly_repack_monomials(Aexps, Qbits, A->exps, A->bits, A->length, ctx->minfo); freeAexps = 1; if (freeBexps) flint_free(Bexps); Bexps = (ulong *) flint_malloc(N*B->length*sizeof(ulong)); mpoly_repack_monomials(Bexps, Qbits, B->exps, B->bits, B->length, ctx->minfo); freeBexps = 1; } /* deal with aliasing */ if (Q == A || Q == B) fq_nmod_mpoly_swap(Q, TQ, ctx); cleanup: fq_nmod_mpoly_clear(TQ, ctx); if (freeAexps) flint_free(Aexps); if (freeBexps) flint_free(Bexps); flint_free(cmpmask); }