/* Copyright (C) 2019-2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fq_nmod_mpoly.h" static int _fq_nmod_mpoly_divides_monagan_pearce1( fq_nmod_mpoly_t Q, const mp_limb_t * Acoeffs, const ulong * Aexps, slong Alen, const mp_limb_t * Bcoeffs, const ulong * Bexps, slong Blen, slong bits, ulong cmpmask, const fq_nmod_ctx_t fqctx) { slong d = fq_nmod_ctx_degree(fqctx); int lt_divides; slong i, j, Qlen, s; slong next_loc, heap_len; mpoly_heap1_s * heap; mpoly_heap_t * chain; slong * store, * store_base; mpoly_heap_t * x; mp_limb_t * Qcoeffs = Q->coeffs; ulong * Qexps = Q->exps; slong * hind; ulong mask, exp, maxexp = Aexps[Alen - 1]; mp_limb_t * lc_minus_inv, * t; int lazy_size = _n_fq_dot_lazy_size(Blen, fqctx); TMP_INIT; TMP_START; t = (mp_limb_t *) TMP_ALLOC(6*d*sizeof(mp_limb_t)); lc_minus_inv = (mp_limb_t *) TMP_ALLOC(d*sizeof(mp_limb_t)); /* alloc array of heap nodes which can be chained together */ next_loc = Blen + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap1_s *) TMP_ALLOC((Blen + 1)*sizeof(mpoly_heap1_s)); chain = (mpoly_heap_t *) TMP_ALLOC(Blen*sizeof(mpoly_heap_t)); store = store_base = (slong *) TMP_ALLOC(2*Blen*sizeof(slong)); /* space for flagged heap indicies */ hind = (slong *) TMP_ALLOC(Blen*sizeof(slong)); for (i = 0; i < Blen; i++) hind[i] = 1; mask = mpoly_overflow_mask_sp(bits); Qlen = 0; /* s is the number of terms * (latest quotient) we should put into heap */ s = Blen; /* insert (-1, 0, Aexps[0]) into heap */ heap_len = 2; x = chain + 0; x->i = -WORD(1); x->j = 0; x->next = NULL; HEAP_ASSIGN(heap[1], Aexps[0], x); /* precompute leading cofficient info */ _n_fq_inv(lc_minus_inv, Bcoeffs + d*0, fqctx, t); _n_fq_neg(lc_minus_inv, lc_minus_inv, d, fqctx->mod); while (heap_len > 1) { exp = heap[1].exp; if (mpoly_monomial_overflows1(exp, mask)) goto not_exact_division; _fq_nmod_mpoly_fit_length(&Qcoeffs, &Q->coeffs_alloc, d, &Qexps, &Q->exps_alloc, 1, Qlen + 1); lt_divides = mpoly_monomial_divides1(Qexps + Qlen, exp, Bexps[0], mask); _n_fq_zero(Qcoeffs + d*Qlen, d); _nmod_vec_zero(t, 6*d); switch (lazy_size) { #define lazycase1(n) \ case n: \ do { \ x = _mpoly_heap_pop1(heap, &heap_len, cmpmask); \ do { \ *store++ = x->i; \ *store++ = x->j; \ if (x->i == -WORD(1)) \ { \ _n_fq_sub(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, \ Acoeffs + d*x->j, d, fqctx->mod); \ } \ else \ { \ hind[x->i] |= WORD(1); \ _n_fq_madd2_lazy##n(t, Bcoeffs + d*x->i, Qcoeffs + d*x->j, d);\ } \ } while ((x = x->next) != NULL); \ } while (heap_len > 1 && heap[1].exp == exp); \ _n_fq_reduce2_lazy##n(t, d, fqctx->mod); \ break; \ lazycase1(1) lazycase1(2) lazycase1(3) default: do { x = _mpoly_heap_pop1(heap, &heap_len, cmpmask); do { *store++ = x->i; *store++ = x->j; if (x->i == -WORD(1)) { _n_fq_sub(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, Acoeffs + d*x->j, d, fqctx->mod); } else { hind[x->i] |= WORD(1); _n_fq_madd2(t, Bcoeffs + d*x->i, Qcoeffs + d*x->j, fqctx, t + 2*d); } } while ((x = x->next) != NULL); } while (heap_len > 1 && heap[1].exp == exp); break; } _nmod_vec_add(t, t, Qcoeffs + d*Qlen, d, fqctx->mod); _n_fq_reduce2(Qcoeffs + d*Qlen, t, fqctx, t + 2*d); /* process nodes taken from the heap */ while (store > store_base) { j = *--store; i = *--store; if (i == -WORD(1)) { /* take next dividend term */ if (j + 1 < Alen) { x = chain + 0; x->i = i; x->j = j + 1; x->next = NULL; _mpoly_heap_insert1(heap, Aexps[x->j], x, &next_loc, &heap_len, cmpmask); } } else { /* should we go right? */ if ( (i + 1 < Blen) && (hind[i + 1] == 2*j + 1) ) { x = chain + i + 1; x->i = i + 1; x->j = j; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, Bexps[x->i] + Qexps[x->j], x, &next_loc, &heap_len, cmpmask); } /* should we go up? */ if (j + 1 == Qlen) { s++; } else if ( ((hind[i] & 1) == 1) && ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1)) ) { x = chain + i; x->i = i; x->j = j + 1; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, Bexps[x->i] + Qexps[x->j], x, &next_loc, &heap_len, cmpmask); } } } if (_n_fq_is_zero(Qcoeffs + d*Qlen, d)) { continue; } _n_fq_mul(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, lc_minus_inv, fqctx, t); if (!lt_divides || (exp^cmpmask) < (maxexp^cmpmask)) goto not_exact_division; /* put newly generated quotient term back into the heap if neccesary */ if (s > 1) { i = 1; x = chain + i; x->i = i; x->j = Qlen; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; _mpoly_heap_insert1(heap, Bexps[x->i] + Qexps[x->j], x, &next_loc, &heap_len, cmpmask); } s = 1; Qlen++; } Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = Qlen; TMP_END; return 1; not_exact_division: Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = 0; TMP_END; return 0; } int _fq_nmod_mpoly_divides_monagan_pearce( fq_nmod_mpoly_t Q, const mp_limb_t * Acoeffs, const ulong * Aexps, slong Alen, const mp_limb_t * Bcoeffs, const ulong * Bexps, slong Blen, flint_bitcnt_t bits, slong N, const ulong * cmpmask, const fq_nmod_ctx_t fqctx) { slong d = fq_nmod_ctx_degree(fqctx); int lt_divides; slong i, j, s; slong next_loc, heap_len; mpoly_heap_s * heap; mpoly_heap_t * chain; slong * store, * store_base; mpoly_heap_t * x; mp_limb_t * Qcoeffs = Q->coeffs; ulong * Qexps = Q->exps; slong Qlen; ulong * exp, * exps; ulong ** exp_list; slong exp_next; mp_limb_t * lc_minus_inv, * t; int lazy_size = _n_fq_dot_lazy_size(Blen, fqctx); ulong mask; slong * hind; TMP_INIT; if (N == 1) return _fq_nmod_mpoly_divides_monagan_pearce1(Q, Acoeffs, Aexps, Alen, Bcoeffs, Bexps, Blen, bits, cmpmask[0], fqctx); TMP_START; t = (mp_limb_t *) TMP_ALLOC(6*d*sizeof(mp_limb_t)); lc_minus_inv = (mp_limb_t *) TMP_ALLOC(d*sizeof(mp_limb_t)); next_loc = Blen + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap_s *) TMP_ALLOC((Blen + 1)*sizeof(mpoly_heap_s)); chain = (mpoly_heap_t *) TMP_ALLOC(Blen*sizeof(mpoly_heap_t)); store = store_base = (slong *) TMP_ALLOC(2*Blen*sizeof(mpoly_heap_t *)); exps = (ulong *) TMP_ALLOC(Blen*N*sizeof(ulong)); exp_list = (ulong **) TMP_ALLOC(Blen*sizeof(ulong *)); exp = (ulong *) TMP_ALLOC(N*sizeof(ulong)); exp_next = 0; for (i = 0; i < Blen; i++) exp_list[i] = exps + i*N; hind = (slong *) TMP_ALLOC(Blen*sizeof(slong)); for (i = 0; i < Blen; i++) hind[i] = 1; mask = bits <= FLINT_BITS ? mpoly_overflow_mask_sp(bits) : 0; Qlen = 0; /* s is the number of terms * (latest quotient) we should put into heap */ s = Blen; /* insert (-1, 0, Aexps[0]) into heap */ heap_len = 2; x = chain + 0; x->i = -WORD(1); x->j = 0; x->next = NULL; heap[1].next = x; heap[1].exp = exp_list[exp_next++]; mpoly_monomial_set(heap[1].exp, Aexps, N); /* precompute leading cofficient info */ _n_fq_inv(lc_minus_inv, Bcoeffs + d*0, fqctx, t); _n_fq_neg(lc_minus_inv, lc_minus_inv, d, fqctx->mod); while (heap_len > 1) { _fq_nmod_mpoly_fit_length(&Qcoeffs, &Q->coeffs_alloc, d, &Qexps, &Q->exps_alloc, N, Qlen + 1); mpoly_monomial_set(exp, heap[1].exp, N); if (bits <= FLINT_BITS) { if (mpoly_monomial_overflows(exp, N, mask)) goto not_exact_division; lt_divides = mpoly_monomial_divides(Qexps + N*Qlen, exp, Bexps, N, mask); } else { if (mpoly_monomial_overflows_mp(exp, N, bits)) goto not_exact_division; lt_divides = mpoly_monomial_divides_mp(Qexps + N*Qlen, exp, Bexps, N, bits); } _n_fq_zero(Qcoeffs + d*Qlen, d); _nmod_vec_zero(t, 6*d); switch (lazy_size) { #define lazycase(n) \ case n: \ do { \ exp_list[--exp_next] = heap[1].exp; \ x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask); \ do { \ *store++ = x->i; \ *store++ = x->j; \ if (x->i == -WORD(1)) \ { \ n_fq_sub(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, \ Acoeffs + d*x->j, fqctx); \ } \ else \ { \ hind[x->i] |= WORD(1); \ _n_fq_madd2_lazy##n(t, Bcoeffs + d*x->i, Qcoeffs + d*x->j, d);\ } \ } while ((x = x->next) != NULL); \ } while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N)); \ _n_fq_reduce2_lazy##n(t, d, fqctx->mod); \ break; \ lazycase(1) lazycase(2) lazycase(3) default: do { exp_list[--exp_next] = heap[1].exp; x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask); do { *store++ = x->i; *store++ = x->j; if (x->i == -WORD(1)) { n_fq_sub(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, Acoeffs + d*x->j, fqctx); } else { hind[x->i] |= WORD(1); _n_fq_madd2(t, Bcoeffs + d*x->i, Qcoeffs + d*x->j, fqctx, t + 2*d); } } while ((x = x->next) != NULL); } while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N)); break; } _nmod_vec_add(t, t, Qcoeffs + d*Qlen, d, fqctx->mod); _n_fq_reduce2(Qcoeffs + d*Qlen, t, fqctx, t + 2*d); /* process nodes taken from the heap */ while (store > store_base) { j = *--store; i = *--store; if (i == -WORD(1)) { /* take next dividend term */ if (j + 1 < Alen) { x = chain + 0; x->i = i; x->j = j + 1; x->next = NULL; mpoly_monomial_set(exp_list[exp_next], Aexps + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } else { /* should we go up */ if ( (i + 1 < Blen) && (hind[i + 1] == 2*j + 1) ) { x = chain + i + 1; x->i = i + 1; x->j = j; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); else mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } /* should we go up? */ if (j + 1 == Qlen) { s++; } else if (((hind[i] & 1) == 1) && ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1))) { x = chain + i; x->i = i; x->j = j + 1; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); else mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } } if (_n_fq_is_zero(Qcoeffs + d*Qlen, d)) { continue; } _n_fq_mul(Qcoeffs + d*Qlen, Qcoeffs + d*Qlen, lc_minus_inv, fqctx, t); if (!lt_divides || mpoly_monomial_gt(Aexps + N*(Alen - 1), exp, N, cmpmask)) { goto not_exact_division; } if (s > 1) { i = 1; x = chain + i; x->i = i; x->j = Qlen; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); else mpoly_monomial_add_mp(exp_list[exp_next], Bexps + N*x->i, Qexps + N*x->j, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } s = 1; Qlen++; } Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = Qlen; TMP_END; return 1; not_exact_division: Q->coeffs = Qcoeffs; Q->exps = Qexps; Q->length = 0; TMP_END; return 0; } /* return 1 if quotient is exact */ int fq_nmod_mpoly_divides_monagan_pearce( fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx) { slong i, N; flint_bitcnt_t Qbits; fmpz * Amaxfields, * Bmaxfields; ulong * cmpmask; ulong * Aexps = A->exps, * Bexps = B->exps, * expq; int divides, easy_exit, freeAexps = 0, freeBexps = 0; ulong mask = 0; TMP_INIT; if (fq_nmod_mpoly_is_zero(B, ctx)) { flint_throw(FLINT_DIVZERO, "Divide by zero in fq_nmod_mpoly_divides_monagan_pearce"); } if (fq_nmod_mpoly_is_zero(A, ctx)) { fq_nmod_mpoly_zero(Q, ctx); return 1; } TMP_START; Amaxfields = (fmpz *) TMP_ALLOC(ctx->minfo->nfields*sizeof(fmpz)); Bmaxfields = (fmpz *) TMP_ALLOC(ctx->minfo->nfields*sizeof(fmpz)); for (i = 0; i < ctx->minfo->nfields; i++) { fmpz_init(Amaxfields + i); fmpz_init(Bmaxfields + i); } mpoly_max_fields_fmpz(Amaxfields, Aexps, A->length, A->bits, ctx->minfo); mpoly_max_fields_fmpz(Bmaxfields, Bexps, B->length, B->bits, ctx->minfo); easy_exit = 0; for (i = 0; i < ctx->minfo->nfields; i++) { if (fmpz_cmp(Amaxfields + i, Bmaxfields + i) < 0) easy_exit = 1; } Qbits = 1 + _fmpz_vec_max_bits(Amaxfields, ctx->minfo->nfields); Qbits = FLINT_MAX(Qbits, A->bits); Qbits = FLINT_MAX(Qbits, B->bits); Qbits = mpoly_fix_bits(Qbits, ctx->minfo); for (i = 0; i < ctx->minfo->nfields; i++) { fmpz_clear(Amaxfields + i); fmpz_clear(Bmaxfields + i); } if (easy_exit) { fq_nmod_mpoly_zero(Q, ctx); divides = 0; goto cleanup; } N = mpoly_words_per_exp(Qbits, ctx->minfo); cmpmask = (ulong *) TMP_ALLOC(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, Qbits, ctx->minfo); /* temporary space to check leading monomials divide */ expq = (ulong *) TMP_ALLOC(N*sizeof(ulong)); /* quick check for easy case of inexact division of leading monomials */ if (Qbits == A->bits && Qbits == B->bits && A->exps[N - 1] < B->exps[N - 1]) { fq_nmod_mpoly_zero(Q, ctx); divides = 0; goto cleanup; } /* ensure input exponents packed to same size as output exponents */ if (Qbits > A->bits) { freeAexps = 1; Aexps = (ulong *) flint_malloc(N*A->length*sizeof(ulong)); mpoly_repack_monomials(Aexps, Qbits, A->exps, A->bits, A->length, ctx->minfo); } if (Qbits > B->bits) { freeBexps = 1; Bexps = (ulong *) flint_malloc(N*B->length*sizeof(ulong)); mpoly_repack_monomials(Bexps, Qbits, B->exps, B->bits, B->length, ctx->minfo); } /* check leading monomial divides exactly */ if (Qbits <= FLINT_BITS) { /* mask with high bit of each exponent vector field set */ for (i = 0; i < FLINT_BITS/Qbits; i++) mask = (mask << Qbits) + (UWORD(1) << (Qbits - 1)); if (!mpoly_monomial_divides(expq, Aexps, Bexps, N, mask)) { fq_nmod_mpoly_zero(Q, ctx); divides = 0; goto cleanup; } } else { if (!mpoly_monomial_divides_mp(expq, Aexps, Bexps, N, Qbits)) { fq_nmod_mpoly_zero(Q, ctx); divides = 0; goto cleanup; } } /* deal with aliasing and divide polynomials */ if (Q == A || Q == B) { fq_nmod_mpoly_t T; fq_nmod_mpoly_init(T, ctx); fq_nmod_mpoly_fit_length_reset_bits(T, A->length/B->length + 1, Qbits, ctx); divides = _fq_nmod_mpoly_divides_monagan_pearce(T, A->coeffs, Aexps, A->length, B->coeffs, Bexps, B->length, Qbits, N, cmpmask, ctx->fqctx); fq_nmod_mpoly_swap(Q, T, ctx); fq_nmod_mpoly_clear(T, ctx); } else { fq_nmod_mpoly_fit_length_reset_bits(Q, A->length/B->length + 1, Qbits, ctx); divides = _fq_nmod_mpoly_divides_monagan_pearce(Q, A->coeffs, Aexps, A->length, B->coeffs, Bexps, B->length, Qbits, N, cmpmask, ctx->fqctx); } cleanup: if (freeAexps) flint_free(Aexps); if (freeBexps) flint_free(Bexps); TMP_END; return divides; }