/* Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fq_nmod_mpoly_factor.h" /* input A, B0, B1 with A(y,x) = B0(y,x) * B1(y,x) mod (y-alpha) return -1: B0(alpha,x) & B1(alpha,x) are not pairwise prime, or A(alpha,x) has wrong degree w.r.t x 0: lift of B0 and B1 to true factors is impossible 1: successfully lifted B0 and B1 to true factors without changing lc_x */ int n_fq_bpoly_hlift2_cubic( n_fq_bpoly_t A, /* clobbered (shifted by alpha) */ n_fq_bpoly_t B0, n_fq_bpoly_t B1, const fq_nmod_t alpha_, slong degree_inner, /* required degree in x */ const fq_nmod_ctx_t ctx, nmod_eval_interp_t E, n_poly_bpoly_stack_t St) { slong d = fq_nmod_ctx_degree(ctx); int success; slong len = nmod_eval_interp_eval_length(E); slong i, j; n_fq_poly_struct * c, * s, * t, * u, * v, * g, * ce; n_fq_bpoly_struct * B0e, * B1e; mp_limb_t * alpha; FLINT_ASSERT(n_fq_bpoly_is_canonical(A, ctx)); FLINT_ASSERT(n_fq_bpoly_is_canonical(B0, ctx)); FLINT_ASSERT(n_fq_bpoly_is_canonical(B1, ctx)); if (A->length < 1 || B0->length < 1 || B1->length < 1) return -1; n_poly_stack_fit_request(St->poly_stack, 7); c = n_poly_stack_take_top(St->poly_stack); s = n_poly_stack_take_top(St->poly_stack); t = n_poly_stack_take_top(St->poly_stack); u = n_poly_stack_take_top(St->poly_stack); v = n_poly_stack_take_top(St->poly_stack); g = n_poly_stack_take_top(St->poly_stack); ce = n_poly_stack_take_top(St->poly_stack); n_bpoly_stack_fit_request(St->bpoly_stack, 2); B0e = n_bpoly_stack_take_top(St->bpoly_stack); B1e = n_bpoly_stack_take_top(St->bpoly_stack); alpha = FLINT_ARRAY_ALLOC(d, mp_limb_t); n_fq_set_fq_nmod(alpha, alpha_, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(A, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B0, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B1, alpha, ctx); #if FLINT_WANT_ASSERT { n_fq_poly_t T; n_fq_poly_init(T); n_fq_poly_mul(T, B0->coeffs + 0, B1->coeffs + 0, ctx); FLINT_ASSERT(n_fq_poly_equal(A->coeffs + 0, T, ctx)); n_fq_poly_clear(T); } #endif if (n_poly_degree(A->coeffs + 0) != degree_inner) { success = -1; goto cleanup; } /* the required degree in x is supposed to be deg_x(A) */ FLINT_ASSERT(n_bpoly_degree1(A) == n_poly_degree(A->coeffs + 0)); n_fq_poly_xgcd(g, s, t, B1->coeffs + 0, B0->coeffs + 0, ctx); if (!n_fq_poly_is_one(g, ctx)) { success = -1; goto cleanup; } n_fq_bpoly_fit_length(B0, A->length); n_fq_bpoly_fit_length(B0e, A->length); for (i = 0; i < B0->length; i++) nmod_eval_interp_from_coeffs_n_fq_poly(B0e->coeffs + i, B0->coeffs + i, E, ctx); for (i = B0->length; i < A->length; i++) { n_fq_poly_zero(B0->coeffs + i); n_fq_evals_zero(B0e->coeffs + i); } n_fq_bpoly_fit_length(B1, A->length); n_fq_bpoly_fit_length(B1e, A->length); for (i = 0; i < B1->length; i++) nmod_eval_interp_from_coeffs_n_fq_poly(B1e->coeffs + i, B1->coeffs + i, E, ctx); for (i = B1->length; i < A->length; i++) { n_fq_poly_zero(B1->coeffs + i); n_fq_evals_zero(B1e->coeffs + i); } for (j = 1; j < A->length; j++) { n_fq_evals_zero(ce); for (i = 0; i <= j; i++) { if (i < B0->length && j - i < B1->length) { n_fq_evals_addmul(ce, B0e->coeffs + i, B1e->coeffs + j - i, len, ctx); } } nmod_eval_interp_to_coeffs_n_fq_poly(c, ce, E, ctx); n_fq_poly_sub(c, A->coeffs + j, c, ctx); #if FLINT_WANT_ASSERT { n_fq_poly_t c_check; n_fq_poly_init(c_check); n_fq_poly_set(c_check, A->coeffs + j, ctx); for (i = 0; i <= j; i++) { if (i < B0->length && j - i < B1->length) { n_fq_poly_mul(t, B0->coeffs + i, B1->coeffs + j - i, ctx); n_fq_poly_sub(c_check, c_check, t, ctx); } } assert(n_fq_poly_equal(c, c_check, ctx)); n_fq_poly_clear(c_check); } #endif if (n_fq_poly_is_zero(c)) continue; n_fq_poly_mul_(t, s, c, ctx, St->poly_stack); n_fq_poly_divrem_(g, u, t, B0->coeffs + 0, ctx, St->poly_stack); n_fq_poly_mul_(t, u, B1->coeffs + 0, ctx, St->poly_stack); n_fq_poly_sub(ce, c, t, ctx); n_fq_poly_divrem_(v, g, ce, B0->coeffs + 0, ctx, St->poly_stack); if (!n_fq_poly_is_zero(u)) { n_fq_poly_add(B0->coeffs + j, B0->coeffs + j, u, ctx); nmod_eval_interp_from_coeffs_n_fq_poly(B0e->coeffs + j, B0->coeffs + j, E, ctx); } if (!n_fq_poly_is_zero(v)) { n_fq_poly_add(B1->coeffs + j, B1->coeffs + j, v, ctx); nmod_eval_interp_from_coeffs_n_fq_poly(B1e->coeffs + j, B1->coeffs + j, E, ctx); } if (!n_fq_poly_is_zero(B0->coeffs + j)) B0->length = FLINT_MAX(B0->length, j + 1); if (!n_fq_poly_is_zero(B1->coeffs + j)) B1->length = FLINT_MAX(B1->length, j + 1); if (B0->length - 1 + B1->length - 1 > A->length - 1) { success = 0; goto cleanup; } } _n_fq_neg(alpha, alpha, d, ctx->mod); n_fq_bpoly_taylor_shift_gen0_n_fq(B0, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B1, alpha, ctx); success = 1; cleanup: #if FLINT_WANT_ASSERT if (success > 0) { n_bpoly_t tp1, tp2; n_bpoly_init(tp1); n_bpoly_init(tp2); n_fq_set_fq_nmod(alpha, alpha_, ctx); _n_fq_neg(alpha, alpha, d, ctx->mod); n_fq_bpoly_taylor_shift_gen0_n_fq(A, alpha, ctx); n_fq_bpoly_mul(tp1, B0, B1, ctx); FLINT_ASSERT(n_fq_bpoly_equal(tp1, A, ctx)); n_bpoly_clear(tp1); n_bpoly_clear(tp2); } #endif n_poly_stack_give_back(St->poly_stack, 7); n_bpoly_stack_give_back(St->bpoly_stack, 2); flint_free(alpha); return success; } int n_fq_bpoly_hlift2( n_bpoly_t A, /* clobbered (shifted by alpha) */ n_bpoly_t B0, n_bpoly_t B1, const fq_nmod_t alpha_, slong degree_inner, /* required degree in x */ const fq_nmod_ctx_t ctx, n_poly_bpoly_stack_t St) { slong d = fq_nmod_ctx_degree(ctx); int success; slong i, j; n_fq_poly_struct * c, * s, * t, * u, * v, * g; mp_limb_t * alpha; FLINT_ASSERT(n_fq_bpoly_is_canonical(A, ctx)); FLINT_ASSERT(n_fq_bpoly_is_canonical(B0, ctx)); FLINT_ASSERT(n_fq_bpoly_is_canonical(B1, ctx)); if (A->length < 1 || B0->length < 1 || B1->length < 1) return -1; n_poly_stack_fit_request(St->poly_stack, 6); c = n_poly_stack_take_top(St->poly_stack); s = n_poly_stack_take_top(St->poly_stack); t = n_poly_stack_take_top(St->poly_stack); u = n_poly_stack_take_top(St->poly_stack); v = n_poly_stack_take_top(St->poly_stack); g = n_poly_stack_take_top(St->poly_stack); alpha = FLINT_ARRAY_ALLOC(d, mp_limb_t); n_fq_set_fq_nmod(alpha, alpha_, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(A, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B0, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B1, alpha, ctx); #if FLINT_WANT_ASSERT { n_poly_t T; n_poly_init(T); n_fq_poly_mul(T, B0->coeffs + 0, B1->coeffs + 0, ctx); FLINT_ASSERT(n_fq_poly_equal(A->coeffs + 0, T, ctx)); n_poly_clear(T); } #endif if (n_poly_degree(A->coeffs + 0) != degree_inner) { success = -1; goto cleanup; } /* the required degree in x is supposed to be deg_x(A) */ FLINT_ASSERT(n_bpoly_degree1(A) == n_poly_degree(A->coeffs + 0)); n_fq_poly_xgcd(g, s, t, B1->coeffs + 0, B0->coeffs + 0, ctx); if (!n_fq_poly_is_one(g, ctx)) { success = -1; goto cleanup; } n_bpoly_fit_length(B0, A->length); n_bpoly_fit_length(B1, A->length); for (j = 1; j < A->length; j++) { n_fq_poly_set(c, A->coeffs + j, ctx); for (i = 0; i <= j; i++) { if (i < B0->length && j - i < B1->length) { n_fq_poly_mul_(t, B0->coeffs + i, B1->coeffs + j - i, ctx, St->poly_stack); n_fq_poly_sub(c, c, t, ctx); } } if (n_fq_poly_is_zero(c)) continue; n_fq_poly_mul_(t, s, c, ctx, St->poly_stack); n_fq_poly_divrem_(g, u, t, B0->coeffs + 0, ctx, St->poly_stack); n_fq_poly_mul_(t, u, B1->coeffs + 0, ctx, St->poly_stack); n_fq_poly_sub(c, c, t, ctx); n_fq_poly_divrem_(v, g, c, B0->coeffs + 0, ctx, St->poly_stack); if (j < B0->length) n_fq_poly_add(B0->coeffs + j, B0->coeffs + j, u, ctx); else n_fq_poly_set(B0->coeffs + j, u, ctx); if (j < B1->length) n_fq_poly_add(B1->coeffs + j, B1->coeffs + j, v, ctx); else n_fq_poly_set(B1->coeffs + j, v, ctx); if (!n_fq_poly_is_zero(B0->coeffs + j)) B0->length = FLINT_MAX(B0->length, j + 1); if (!n_fq_poly_is_zero(B1->coeffs + j)) B1->length = FLINT_MAX(B1->length, j + 1); if (B0->length - 1 + B1->length - 1 > A->length - 1) { success = 0; goto cleanup; } } _n_fq_neg(alpha, alpha, d, ctx->mod); n_fq_bpoly_taylor_shift_gen0_n_fq(B0, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_n_fq(B1, alpha, ctx); success = 1; cleanup: #if FLINT_WANT_ASSERT if (success > 0) { n_bpoly_t tp1, tp2; n_bpoly_init(tp1); n_bpoly_init(tp2); n_fq_set_fq_nmod(alpha, alpha_, ctx); _n_fq_neg(alpha, alpha, d, ctx->mod); n_fq_bpoly_taylor_shift_gen0_n_fq(A, alpha, ctx); n_fq_bpoly_mul(tp1, B0, B1, ctx); FLINT_ASSERT(n_fq_bpoly_equal(tp1, A, ctx)); n_bpoly_clear(tp1); n_bpoly_clear(tp2); } #endif n_poly_stack_give_back(St->poly_stack, 6); flint_free(alpha); return success; } /* r factor version */ int n_fq_bpoly_hlift( slong r, n_bpoly_t A, /* clobbered (shifted by alpha) */ n_bpoly_struct * B, const fq_nmod_t alpha, slong degree_inner, /* required degree in x */ const fq_nmod_ctx_t ctx, n_poly_bpoly_stack_t St) { int success; slong i, j, k, tdeg; n_poly_struct * s, * v; n_poly_t c, t, u, g1, g2; n_bpoly_struct * U; fq_nmod_t malpha; FLINT_ASSERT(r > 2); FLINT_ASSERT(n_fq_bpoly_is_canonical(A, ctx)); if (A->length < 1) return -1; for (i = 0; i < r; i++) { FLINT_ASSERT(n_fq_bpoly_is_canonical(B + i, ctx)); if (B[i].length < 1) return -1; } U = FLINT_ARRAY_ALLOC(r, n_bpoly_struct); for (i = 0; i < r; i++) { n_bpoly_init(U + i); n_bpoly_fit_length(U + i, A->length); for (j = 0; j < A->length; j++) n_poly_zero(U[i].coeffs + j); U[i].length = A->length; n_bpoly_fit_length(B + i, A->length); } s = FLINT_ARRAY_ALLOC(r, n_poly_struct); v = FLINT_ARRAY_ALLOC(r, n_poly_struct); for (i = 0; i < r; i++) { n_poly_init(s + i); n_poly_init(v + i); } n_poly_init(c); n_poly_init(t); n_poly_init(u); n_poly_init(g1); n_poly_init(g2); fq_nmod_init(malpha, ctx); fq_nmod_neg(malpha, alpha, ctx); n_fq_bpoly_taylor_shift_gen0_fq_nmod(A, alpha, ctx); for (i = 0; i < r; i++) n_fq_bpoly_taylor_shift_gen0_fq_nmod(B + i, alpha, ctx); /* supposed to have A(alpha,x) = B0(alpha,x) * B1(alpha,x) * ... */ #if FLINT_WANT_ASSERT { n_poly_t T; n_poly_init(T); n_fq_poly_mul(T, B[0].coeffs + 0, B[1].coeffs + 0, ctx); for (i = 2; i < r; i++) n_fq_poly_mul(T, T, B[i].coeffs + 0, ctx); FLINT_ASSERT(n_fq_poly_equal(A->coeffs + 0, T, ctx)); n_poly_clear(T); } #endif if (n_poly_degree(A->coeffs + 0) != degree_inner) { success = -1; goto cleanup; } /* the required degree in x is supposed to be deg_x(A) */ FLINT_ASSERT(n_bpoly_degree1(A) == n_poly_degree(A->coeffs + 0)); for (i = 0; i < r; i++) { n_fq_poly_one(t, ctx); for (j = 0; j < r; j++) { if (j != i) n_fq_poly_mul(t, t, B[j].coeffs + 0, ctx); } n_fq_poly_xgcd(g1, s + i, g2, t, B[i].coeffs + 0, ctx); if (!n_fq_poly_is_one(g1, ctx)) { success = -1; goto cleanup; } } k = r - 2; n_fq_poly_mul(U[k].coeffs + 0, B[k].coeffs + 0, B[k + 1].coeffs + 0, ctx); for (k--; k > 0; k--) n_fq_poly_mul(U[k].coeffs + 0, B[k].coeffs + 0, U[k + 1].coeffs + 0, ctx); for (j = 1; j < A->length; j++) { for (k = 0; k < r; k++) n_poly_zero(U[k].coeffs + j); k = r - 2; n_poly_zero(U[k].coeffs + j); for (i = 0; i <= j; i++) { if (i < B[k].length && j - i < B[k + 1].length) { n_fq_poly_mul(t, B[k].coeffs + i, B[k + 1].coeffs + j - i, ctx); n_fq_poly_add(U[k].coeffs + j, U[k].coeffs + j, t, ctx); } } for (k--; k > 0; k--) { n_poly_zero(U[k].coeffs + j); for (i = 0; i <= j; i++) { if (i < B[k].length) { n_fq_poly_mul(t, B[k].coeffs + i, U[k + 1].coeffs + j - i, ctx); n_fq_poly_add(U[k].coeffs + j, U[k].coeffs + j, t, ctx); } } } n_fq_poly_set(c, A->coeffs + j, ctx); for (i = 0; i <= j; i++) { if (i < B[0].length) { n_fq_poly_mul(t, B[0].coeffs + i, U[1].coeffs + j - i, ctx); n_fq_poly_sub(c, c, t, ctx); } } if (n_poly_is_zero(c)) continue; tdeg = 0; for (i = 0; i < r; i++) { n_fq_poly_mul(t, s + i, c, ctx); n_fq_poly_divrem(g1, v + i, t, B[i].coeffs + 0, ctx); while (j >= B[i].length) { n_poly_zero(B[i].coeffs + B[i].length); B[i].length++; } n_fq_poly_add(B[i].coeffs + j, B[i].coeffs + j, v + i, ctx); n_bpoly_normalise(B + i); tdeg += B[i].length - 1; } if (tdeg >= A->length) { success = 0; goto cleanup; } k = r - 2; n_fq_poly_mul(t, B[k].coeffs + 0, v + k + 1, ctx); n_fq_poly_mul(u, B[k + 1].coeffs + 0, v + k, ctx); n_fq_poly_add(t, t, u, ctx); n_fq_poly_add(U[k].coeffs + j, U[k].coeffs + j, t, ctx); for (k--; k > 0; k--) { n_fq_poly_mul(u, B[k].coeffs + 0, t, ctx); n_fq_poly_mul(t, U[k + 1].coeffs + 0, v + k, ctx); n_fq_poly_add(t, t, u, ctx); n_fq_poly_add(U[k].coeffs + j, U[k].coeffs + j, t, ctx); } } for (i = 0; i < r; i++) n_fq_bpoly_taylor_shift_gen0_fq_nmod(B + i, malpha, ctx); success = 1; cleanup: #if FLINT_WANT_ASSERT if (success > 0) { n_fq_bpoly_t tp1, tp2; n_fq_bpoly_init(tp1); n_fq_bpoly_init(tp2); n_fq_bpoly_taylor_shift_gen0_fq_nmod(A, malpha, ctx); n_fq_bpoly_mul(tp1, B + 0, B + 1, ctx); for (i = 2; i < r; i++) { n_fq_bpoly_mul(tp2, tp1, B + i, ctx); n_bpoly_swap(tp1, tp2); } FLINT_ASSERT(n_fq_bpoly_equal(tp1, A, ctx)); n_fq_bpoly_clear(tp1); n_fq_bpoly_clear(tp2); } #endif for (i = 0; i < r; i++) { n_bpoly_clear(U + i); n_poly_clear(s + i); n_poly_clear(v + i); } flint_free(U); flint_free(s); flint_free(v); n_poly_clear(c); n_poly_clear(t); n_poly_clear(u); n_poly_clear(g1); n_poly_clear(g2); fq_nmod_clear(malpha, ctx); return success; }