/* Copyright (C) 2008, 2009 William Hart Copyright (C) 2010, 2011 Sebastian Pancratz Copyright (C) 2013 Mike Hansen This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #ifdef T #include "templates.h" void _TEMPLATE(T, poly_divrem_divconquer_recursive) ( TEMPLATE(T, struct) * Q, TEMPLATE(T, struct) * BQ, TEMPLATE(T, struct) * W, const TEMPLATE(T, struct) * A, const TEMPLATE(T, struct) * B, slong lenB, const TEMPLATE(T, t) invB, const TEMPLATE(T, ctx_t) ctx) { if (lenB <= TEMPLATE(CAP_T, POLY_DIVREM_DIVCONQUER_CUTOFF)) { _TEMPLATE(T, vec_zero) (BQ, lenB - 1, ctx); _TEMPLATE(T, vec_set) (BQ + (lenB - 1), A + (lenB - 1), lenB, ctx); _TEMPLATE(T, poly_divrem_basecase) (Q, BQ, BQ, 2 * lenB - 1, B, lenB, invB, ctx); _TEMPLATE(T, poly_neg) (BQ, BQ, lenB - 1, ctx); _TEMPLATE(T, vec_set) (BQ + (lenB - 1), A + (lenB - 1), lenB, ctx); } else { const slong n2 = lenB / 2; const slong n1 = lenB - n2; TEMPLATE(T, struct) * W1 = W; TEMPLATE(T, struct) * W2 = W + lenB; const TEMPLATE(T, struct) * p1 = A + 2 * n2; const TEMPLATE(T, struct) * p2; const TEMPLATE(T, struct) * d1 = B + n2; const TEMPLATE(T, struct) * d2 = B; const TEMPLATE(T, struct) * d3 = B + n1; const TEMPLATE(T, struct) * d4 = B; TEMPLATE(T, struct) * q1 = Q + n2; TEMPLATE(T, struct) * q2 = Q; TEMPLATE(T, struct) * dq1 = BQ + n2; TEMPLATE(T, struct) * d1q1 = BQ + 2 * n2; TEMPLATE(T, struct) * d2q1, *d3q2, *d4q2, *t; /* Set q1 to p1 div d1, a 2 n1 - 1 by n1 division so q1 ends up being of length n1; d1q1 = d1 q1 is of length 2 n1 - 1 */ _TEMPLATE(T, poly_divrem_divconquer_recursive) (q1, d1q1, W1, p1, d1, n1, invB, ctx); /* Compute d2q1 = d2 q1, of length lenB - 1 */ d2q1 = W1; _TEMPLATE(T, poly_mul) (d2q1, q1, n1, d2, n2, ctx); /* Compute dq1 = d1 q1 x^n2 + d2 q1, of length 2 n1 + n2 - 1 */ _TEMPLATE(T, vec_swap) (dq1, d2q1, n2, ctx); _TEMPLATE(T, poly_add) (dq1 + n2, dq1 + n2, n1 - 1, d2q1 + n2, n1 - 1, ctx); /* Compute t = A/x^n2 - dq1, which has length 2 n1 + n2 - 1, but we are not interested in the top n1 coeffs as they will be zero, so this has effective length n1 + n2 - 1 For the following division, we want to set {p2, 2 n2 - 1} to the top 2 n2 - 1 coeffs of this Since the bottom n2 - 1 coeffs of p2 are irrelevant for the division, we in fact set {t, n2} to the relevant coeffs */ t = BQ; _TEMPLATE(T, poly_sub) (t, A + n2 + (n1 - 1), n2, dq1 + (n1 - 1), n2, ctx); p2 = t - (n2 - 1); /* Compute q2 = t div d3, a 2 n2 - 1 by n2 division, so q2 will have length n2; let d3q2 = d3 q2, of length 2 n2 - 1 */ d3q2 = W1; _TEMPLATE(T, poly_divrem_divconquer_recursive) (q2, d3q2, W2, p2, d3, n2, invB, ctx); /* Compute d4q2 = d4 q2, of length n1 + n2 - 1 = lenB - 1 */ d4q2 = W2; _TEMPLATE(T, poly_mul) (d4q2, d4, n1, q2, n2, ctx); /* Compute dq2 = d3q2 x^n1 + d4q2, of length n1 + 2 n2 - 1 */ _TEMPLATE(T, vec_swap) (BQ, d4q2, n2, ctx); _TEMPLATE(T, poly_add) (BQ + n2, BQ + n2, n1 - 1, d4q2 + n2, n1 - 1, ctx); _TEMPLATE(T, poly_add) (BQ + n1, BQ + n1, 2 * n2 - 1, d3q2, 2 * n2 - 1, ctx); /* Note Q = q1 x^n2 + q2, and BQ = dq1 x^n2 + dq2 */ } } #endif