/* Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fq_zech_mpoly.h" static slong _fq_zech_mpoly_divides_monagan_pearce( fq_zech_struct ** coeff1, ulong ** exp1, slong * alloc, const fq_zech_struct * coeff2, const ulong * exp2, slong len2, const fq_zech_struct * coeff3, const ulong * exp3, slong len3, flint_bitcnt_t bits, slong N, const ulong * cmpmask, const fq_zech_ctx_t fqctx) { int lt_divides; slong i, j, q_len, s; slong next_loc, heap_len; mpoly_heap_s * heap; mpoly_heap_t * chain; slong * store, * store_base; mpoly_heap_t * x; fq_zech_struct * q_coeff = * coeff1; ulong * q_exp = * exp1; ulong * exp, * exps; ulong ** exp_list; slong exp_next; fq_zech_t lc_minus_inv, pp; ulong mask; slong * hind; TMP_INIT; TMP_START; fq_zech_init(pp, fqctx); fq_zech_init(lc_minus_inv, fqctx); /* alloc array of heap nodes which can be chained together */ next_loc = len3 + 4; /* something bigger than heap can ever be */ heap = (mpoly_heap_s *) TMP_ALLOC((len3 + 1)*sizeof(mpoly_heap_s)); chain = (mpoly_heap_t *) TMP_ALLOC(len3*sizeof(mpoly_heap_t)); store = store_base = (slong *) TMP_ALLOC(2*len3*sizeof(mpoly_heap_t *)); /* array of exponent vectors, each of "N" words */ exps = (ulong *) TMP_ALLOC(len3*N*sizeof(ulong)); /* list of pointers to available exponent vectors */ exp_list = (ulong **) TMP_ALLOC(len3*sizeof(ulong *)); /* space to save copy of current exponent vector */ exp = (ulong *) TMP_ALLOC(N*sizeof(ulong)); /* set up list of available exponent vectors */ exp_next = 0; for (i = 0; i < len3; i++) exp_list[i] = exps + i*N; /* space for flagged heap indicies */ hind = (slong *) TMP_ALLOC(len3*sizeof(slong)); for (i = 0; i < len3; i++) hind[i] = 1; mask = bits <= FLINT_BITS ? mpoly_overflow_mask_sp(bits) : 0; q_len = WORD(0); /* s is the number of terms * (latest quotient) we should put into heap */ s = len3; /* insert (-1, 0, exp2[0]) into heap */ heap_len = 2; x = chain + 0; x->i = -WORD(1); x->j = 0; x->next = NULL; heap[1].next = x; heap[1].exp = exp_list[exp_next++]; mpoly_monomial_set(heap[1].exp, exp2, N); /* precompute leading cofficient info */ fq_zech_inv(lc_minus_inv, coeff3 + 0, fqctx); fq_zech_neg(lc_minus_inv, lc_minus_inv, fqctx); while (heap_len > 1) { _fq_zech_mpoly_fit_length(&q_coeff, &q_exp, alloc, q_len + 1, N, fqctx); mpoly_monomial_set(exp, heap[1].exp, N); if (bits <= FLINT_BITS) { if (mpoly_monomial_overflows(exp, N, mask)) goto not_exact_division; lt_divides = mpoly_monomial_divides(q_exp + q_len*N, exp, exp3, N, mask); } else { if (mpoly_monomial_overflows_mp(exp, N, bits)) goto not_exact_division; lt_divides = mpoly_monomial_divides_mp(q_exp + q_len*N, exp, exp3, N, bits); } fq_zech_zero(q_coeff + q_len, fqctx); do { exp_list[--exp_next] = heap[1].exp; x = _mpoly_heap_pop(heap, &heap_len, N, cmpmask); do { *store++ = x->i; *store++ = x->j; if (x->i == -WORD(1)) { fq_zech_sub(q_coeff + q_len, q_coeff + q_len, coeff2 + x->j, fqctx); } else { hind[x->i] |= WORD(1); fq_zech_mul(pp, coeff3 + x->i, q_coeff + x->j, fqctx); fq_zech_add(q_coeff + q_len, q_coeff + q_len, pp, fqctx); } } while ((x = x->next) != NULL); } while (heap_len > 1 && mpoly_monomial_equal(heap[1].exp, exp, N)); /* process nodes taken from the heap */ while (store > store_base) { j = *--store; i = *--store; if (i == -WORD(1)) { /* take next dividend term */ if (j + 1 < len2) { x = chain + 0; x->i = i; x->j = j + 1; x->next = NULL; mpoly_monomial_set(exp_list[exp_next], exp2 + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } else { /* should we go up */ if ( (i + 1 < len3) && (hind[i + 1] == 2*j + 1) ) { x = chain + i + 1; x->i = i + 1; x->j = j; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); else mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } /* should we go up? */ if (j + 1 == q_len) { s++; } else if ( ((hind[i] & 1) == 1) && ((i == 1) || (hind[i - 1] >= 2*(j + 2) + 1)) ) { x = chain + i; x->i = i; x->j = j + 1; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); else mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } } } fq_zech_mul(q_coeff + q_len, q_coeff + q_len, lc_minus_inv, fqctx); if (fq_zech_is_zero(q_coeff + q_len, fqctx)) { continue; } if (!lt_divides || mpoly_monomial_gt(exp2 + N*(len2 - 1), exp, N, cmpmask)) { goto not_exact_division; } if (s > 1) { i = 1; x = chain + i; x->i = i; x->j = q_len; x->next = NULL; hind[x->i] = 2*(x->j + 1) + 0; if (bits <= FLINT_BITS) mpoly_monomial_add(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); else mpoly_monomial_add_mp(exp_list[exp_next], exp3 + x->i*N, q_exp + x->j*N, N); exp_next += _mpoly_heap_insert(heap, exp_list[exp_next], x, &next_loc, &heap_len, N, cmpmask); } s = 1; q_len++; } cleanup: *coeff1 = q_coeff; *exp1 = q_exp; TMP_END; fq_zech_clear(pp, fqctx); fq_zech_clear(lc_minus_inv, fqctx); return q_len; not_exact_division: q_len = 0; goto cleanup; } /* return 1 if quotient is exact */ int fq_zech_mpoly_divides_monagan_pearce(fq_zech_mpoly_t poly1, const fq_zech_mpoly_t poly2, const fq_zech_mpoly_t poly3, const fq_zech_mpoly_ctx_t ctx) { slong i, N, len = 0; flint_bitcnt_t exp_bits; fmpz * max_fields2, * max_fields3; ulong * cmpmask; ulong * exp2 = poly2->exps, * exp3 = poly3->exps, * expq; int easy_exit, free2 = 0, free3 = 0; ulong mask = 0; TMP_INIT; if (poly3->length == 0) flint_throw(FLINT_DIVZERO, "Divide by zero in fq_zech_mpoly_divides_monagan_pearce"); if (poly2->length == 0) { fq_zech_mpoly_zero(poly1, ctx); return 1; } TMP_START; max_fields2 = (fmpz *) TMP_ALLOC(ctx->minfo->nfields*sizeof(fmpz)); max_fields3 = (fmpz *) TMP_ALLOC(ctx->minfo->nfields*sizeof(fmpz)); for (i = 0; i < ctx->minfo->nfields; i++) { fmpz_init(max_fields2 + i); fmpz_init(max_fields3 + i); } mpoly_max_fields_fmpz(max_fields2, poly2->exps, poly2->length, poly2->bits, ctx->minfo); mpoly_max_fields_fmpz(max_fields3, poly3->exps, poly3->length, poly3->bits, ctx->minfo); easy_exit = 0; for (i = 0; i < ctx->minfo->nfields; i++) { /* cannot be exact division if any max field from poly2 is less than corresponding max field from poly3 */ if (fmpz_cmp(max_fields2 + i, max_fields3 + i) < 0) easy_exit = 1; } exp_bits = _fmpz_vec_max_bits(max_fields2, ctx->minfo->nfields); exp_bits = FLINT_MAX(MPOLY_MIN_BITS, exp_bits + 1); exp_bits = FLINT_MAX(exp_bits, poly2->bits); exp_bits = FLINT_MAX(exp_bits, poly3->bits); exp_bits = mpoly_fix_bits(exp_bits, ctx->minfo); for (i = 0; i < ctx->minfo->nfields; i++) { fmpz_clear(max_fields2 + i); fmpz_clear(max_fields3 + i); } if (easy_exit) { len = 0; goto cleanup; } N = mpoly_words_per_exp(exp_bits, ctx->minfo); cmpmask = (ulong*) TMP_ALLOC(N*sizeof(ulong)); mpoly_get_cmpmask(cmpmask, N, exp_bits, ctx->minfo); /* temporary space to check leading monomials divide */ expq = (ulong *) TMP_ALLOC(N*sizeof(ulong)); /* quick check for easy case of inexact division of leading monomials */ if (poly2->bits == poly3->bits && N == 1 && poly2->exps[0] < poly3->exps[0]) { goto cleanup; } /* ensure input exponents packed to same size as output exponents */ if (exp_bits > poly2->bits) { free2 = 1; exp2 = (ulong *) flint_malloc(N*poly2->length*sizeof(ulong)); mpoly_repack_monomials(exp2, exp_bits, poly2->exps, poly2->bits, poly2->length, ctx->minfo); } if (exp_bits > poly3->bits) { free3 = 1; exp3 = (ulong *) flint_malloc(N*poly3->length*sizeof(ulong)); mpoly_repack_monomials(exp3, exp_bits, poly3->exps, poly3->bits, poly3->length, ctx->minfo); } /* check leading monomial divides exactly */ if (exp_bits <= FLINT_BITS) { /* mask with high bit of each exponent vector field set */ for (i = 0; i < FLINT_BITS/exp_bits; i++) mask = (mask << exp_bits) + (UWORD(1) << (exp_bits - 1)); if (!mpoly_monomial_divides(expq, exp2, exp3, N, mask)) { len = 0; goto cleanup; } } else { if (!mpoly_monomial_divides_mp(expq, exp2, exp3, N, exp_bits)) { len = 0; goto cleanup; } } /* deal with aliasing and divide polynomials */ if (poly1 == poly2 || poly1 == poly3) { fq_zech_mpoly_t temp; fq_zech_mpoly_init2(temp, poly2->length/poly3->length + 1, ctx); fq_zech_mpoly_fit_bits(temp, exp_bits, ctx); temp->bits = exp_bits; len = _fq_zech_mpoly_divides_monagan_pearce(&temp->coeffs, &temp->exps, &temp->alloc, poly2->coeffs, exp2, poly2->length, poly3->coeffs, exp3, poly3->length, exp_bits, N, cmpmask, ctx->fqctx); fq_zech_mpoly_swap(temp, poly1, ctx); fq_zech_mpoly_clear(temp, ctx); } else { fq_zech_mpoly_fit_length(poly1, poly2->length/poly3->length + 1, ctx); fq_zech_mpoly_fit_bits(poly1, exp_bits, ctx); poly1->bits = exp_bits; len = _fq_zech_mpoly_divides_monagan_pearce(&poly1->coeffs, &poly1->exps, &poly1->alloc, poly2->coeffs, exp2, poly2->length, poly3->coeffs, exp3, poly3->length, exp_bits, N, cmpmask, ctx->fqctx); } cleanup: _fq_zech_mpoly_set_length(poly1, len, ctx); if (free2) flint_free(exp2); if (free3) flint_free(exp3); TMP_END; /* division is exact if len is nonzero */ return (len != 0); }