/*
Copyright (C) 2010 William Hart
Copyright (C) 2010,2011 Fredrik Johansson
Copyright (C) 2014 Ashish Kedia
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#ifndef NMOD_MAT_H
#define NMOD_MAT_H
#ifdef NMOD_MAT_INLINES_C
#define NMOD_MAT_INLINE FLINT_DLL
#else
#define NMOD_MAT_INLINE static __inline__
#endif
#undef ulong
#define ulong ulongxx /* interferes with system includes */
#include
#undef ulong
#include
#define ulong mp_limb_t
#include "flint.h"
#include "longlong.h"
#include "ulong_extras.h"
#include "nmod_vec.h"
#include "fmpz.h"
#include "thread_support.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct
{
mp_limb_t * entries;
slong r;
slong c;
mp_limb_t ** rows;
nmod_t mod;
}
nmod_mat_struct;
/* nmod_mat_t allows reference-like semantics for nmod_mat_struct */
typedef nmod_mat_struct nmod_mat_t[1];
#define nmod_mat_entry(mat,i,j) ((mat)->rows[(i)][(j)])
NMOD_MAT_INLINE
mp_limb_t nmod_mat_get_entry(const nmod_mat_t mat, slong i, slong j)
{
return mat->rows[i][j];
}
NMOD_MAT_INLINE
mp_limb_t * nmod_mat_entry_ptr(const nmod_mat_t mat, slong i, slong j)
{
return mat->rows[i] + j;
}
/* See inlines.c */
NMOD_MAT_INLINE
slong nmod_mat_nrows(const nmod_mat_t mat)
{
return mat->r;
}
NMOD_MAT_INLINE
slong nmod_mat_ncols(const nmod_mat_t mat)
{
return mat->c;
}
NMOD_MAT_INLINE
void _nmod_mat_set_mod(nmod_mat_t mat, mp_limb_t n)
{
mat->mod.n = n;
count_leading_zeros(mat->mod.norm, n);
invert_limb(mat->mod.ninv, n << mat->mod.norm);
}
/* Memory management */
FLINT_DLL void nmod_mat_init(nmod_mat_t mat, slong rows, slong cols, mp_limb_t n);
FLINT_DLL void nmod_mat_init_set(nmod_mat_t mat, const nmod_mat_t src);
FLINT_DLL void nmod_mat_clear(nmod_mat_t mat);
FLINT_DLL void nmod_mat_one(nmod_mat_t mat);
FLINT_DLL void nmod_mat_swap(nmod_mat_t mat1, nmod_mat_t mat2);
NMOD_MAT_INLINE void
nmod_mat_swap_entrywise(nmod_mat_t mat1, nmod_mat_t mat2)
{
slong i, j;
for (i = 0; i < nmod_mat_nrows(mat1); i++)
{
mp_limb_t * row1 = mat1->rows[i];
mp_limb_t * row2 = mat2->rows[i];
for (j = 0; j < nmod_mat_ncols(mat1); j++)
MP_LIMB_SWAP(row1[j], row2[j]);
}
}
/* Windows and concatenation */
FLINT_DLL void nmod_mat_window_init(nmod_mat_t window, const nmod_mat_t mat, slong r1, slong c1, slong r2, slong c2);
FLINT_DLL void nmod_mat_window_clear(nmod_mat_t window);
FLINT_DLL void nmod_mat_concat_horizontal(nmod_mat_t res,
const nmod_mat_t mat1, const nmod_mat_t mat2);
FLINT_DLL void nmod_mat_concat_vertical(nmod_mat_t res,
const nmod_mat_t mat1, const nmod_mat_t mat2);
/* Random matrix generation */
FLINT_DLL void nmod_mat_randtest(nmod_mat_t mat, flint_rand_t state);
FLINT_DLL void nmod_mat_randfull(nmod_mat_t mat, flint_rand_t state);
FLINT_DLL int nmod_mat_randpermdiag(nmod_mat_t mat, flint_rand_t state,
mp_srcptr diag, slong n);
FLINT_DLL void nmod_mat_randrank(nmod_mat_t, flint_rand_t state, slong rank);
FLINT_DLL void nmod_mat_randops(nmod_mat_t mat, slong count, flint_rand_t state);
FLINT_DLL void nmod_mat_randtril(nmod_mat_t mat, flint_rand_t state, int unit);
FLINT_DLL void nmod_mat_randtriu(nmod_mat_t mat, flint_rand_t state, int unit);
FLINT_DLL void nmod_mat_print_pretty(const nmod_mat_t mat);
FLINT_DLL int nmod_mat_equal(const nmod_mat_t mat1, const nmod_mat_t mat2);
FLINT_DLL void nmod_mat_zero(nmod_mat_t mat);
FLINT_DLL int nmod_mat_is_zero(const nmod_mat_t mat);
NMOD_MAT_INLINE
int nmod_mat_is_zero_row(const nmod_mat_t mat, slong i)
{
return _nmod_vec_is_zero(mat->rows[i], mat->c);
}
NMOD_MAT_INLINE
int nmod_mat_is_empty(const nmod_mat_t mat)
{
return (mat->r == 0) || (mat->c == 0);
}
NMOD_MAT_INLINE
int nmod_mat_is_square(const nmod_mat_t mat)
{
return (mat->r == mat->c);
}
FLINT_DLL void nmod_mat_set(nmod_mat_t B, const nmod_mat_t A);
FLINT_DLL void nmod_mat_transpose(nmod_mat_t B, const nmod_mat_t A);
/* Addition and subtraction */
FLINT_DLL void nmod_mat_add(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_sub(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_neg(nmod_mat_t B, const nmod_mat_t A);
/* Matrix-scalar arithmetic */
FLINT_DLL void nmod_mat_scalar_mul(nmod_mat_t B, const nmod_mat_t A, mp_limb_t c);
FLINT_DLL void nmod_mat_scalar_addmul_ui(nmod_mat_t dest,
const nmod_mat_t X, const nmod_mat_t Y, const mp_limb_t b);
/* deprecated */
#define nmod_mat_scalar_mul_add(dest, X, b, Y) nmod_mat_scalar_addmul_ui(dest, X, Y, b)
NMOD_MAT_INLINE
void nmod_mat_scalar_mul_fmpz(nmod_mat_t res, const nmod_mat_t M, const fmpz_t c)
{
fmpz_t d;
fmpz_init(d);
fmpz_mod_ui(d, c, res->mod.n);
nmod_mat_scalar_mul(res, M, fmpz_get_ui(d));
fmpz_clear(d);
}
/* Matrix multiplication */
FLINT_DLL void nmod_mat_mul(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL int nmod_mat_mul_blas(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_mul_classical(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void
_nmod_mat_mul_classical_threaded_pool_op(nmod_mat_t D, const nmod_mat_t C,
const nmod_mat_t A, const nmod_mat_t B, int op,
thread_pool_handle * threads, slong num_threads);
FLINT_DLL void nmod_mat_mul_classical_threaded(nmod_mat_t C,
const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_mul_strassen(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void _nmod_mat_mul_classical_op(nmod_mat_t D, const nmod_mat_t C,
const nmod_mat_t A, const nmod_mat_t B, int op);
FLINT_DLL void nmod_mat_addmul(nmod_mat_t D, const nmod_mat_t C,
const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_submul(nmod_mat_t D, const nmod_mat_t C,
const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL void nmod_mat_mul_nmod_vec(mp_limb_t * c, const nmod_mat_t A,
const mp_limb_t * b, slong blen);
FLINT_DLL void nmod_mat_mul_nmod_vec_ptr(mp_limb_t * const * c,
const nmod_mat_t A, const mp_limb_t * const * b, slong blen);
FLINT_DLL void nmod_mat_nmod_vec_mul(mp_limb_t * c, const mp_limb_t * a,
slong alen, const nmod_mat_t B);
FLINT_DLL void nmod_mat_nmod_vec_mul_ptr(mp_limb_t * const * c,
const mp_limb_t * const * a, slong alen, const nmod_mat_t B);
/* Exponent */
FLINT_DLL void _nmod_mat_pow(nmod_mat_t dest, const nmod_mat_t mat, ulong pow);
FLINT_DLL void nmod_mat_pow(nmod_mat_t dest, const nmod_mat_t mat, ulong pow);
/* Trace */
FLINT_DLL mp_limb_t nmod_mat_trace(const nmod_mat_t mat);
/* Determinant */
FLINT_DLL mp_limb_t _nmod_mat_det(nmod_mat_t A);
FLINT_DLL mp_limb_t nmod_mat_det(const nmod_mat_t A);
FLINT_DLL mp_limb_t _nmod_mat_det_howell(nmod_mat_t A);
FLINT_DLL mp_limb_t nmod_mat_det_howell(const nmod_mat_t A);
/* Rank */
FLINT_DLL slong nmod_mat_rank(const nmod_mat_t A);
/* Inverse */
FLINT_DLL int nmod_mat_inv(nmod_mat_t B, const nmod_mat_t A);
/* Permutations */
NMOD_MAT_INLINE
void nmod_mat_swap_rows(nmod_mat_t mat, slong * perm, slong r, slong s)
{
if (r != s && !nmod_mat_is_empty(mat))
{
mp_limb_t * u;
slong t;
if (perm)
{
t = perm[s];
perm[s] = perm[r];
perm[r] = t;
}
u = mat->rows[s];
mat->rows[s] = mat->rows[r];
mat->rows[r] = u;
}
}
NMOD_MAT_INLINE
void nmod_mat_invert_rows(nmod_mat_t mat, slong * perm)
{
slong i;
for (i = 0; i < mat->r/2; i++)
nmod_mat_swap_rows(mat, perm, i, mat->r - i - 1);
}
NMOD_MAT_INLINE
void nmod_mat_swap_cols(nmod_mat_t mat, slong * perm, slong r, slong s)
{
if (r != s && !nmod_mat_is_empty(mat))
{
slong t;
if (perm)
{
t = perm[s];
perm[s] = perm[r];
perm[r] = t;
}
for (t = 0; t < mat->r; t++)
{
mp_limb_t c = mat->rows[t][r];
mat->rows[t][r] = mat->rows[t][s];
mat->rows[t][s] = c;
}
}
}
NMOD_MAT_INLINE
void nmod_mat_invert_cols(nmod_mat_t mat, slong * perm)
{
if (!(nmod_mat_is_empty(mat)))
{
slong t;
slong i;
slong c = mat->c;
slong k = mat->c/2;
mp_limb_t e;
if (perm)
{
for (i =0; i < k; i++)
{
t = perm[i];
perm[i] = perm[c - i];
perm[c - i] = t;
}
}
for (t = 0; t < mat->r; t++)
{
for (i = 0; i < k; i++)
{
e = mat->rows[t][i];
mat->rows[t][i] = mat->rows[t][c - i - 1];
mat->rows[t][c - i - 1] = e;
}
}
}
}
FLINT_DLL void nmod_mat_apply_permutation(nmod_mat_t A, slong * P, slong n);
/* Triangular solving */
FLINT_DLL void nmod_mat_solve_tril(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit);
FLINT_DLL void nmod_mat_solve_tril_recursive(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit);
FLINT_DLL void nmod_mat_solve_tril_classical(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit);
FLINT_DLL void nmod_mat_solve_triu(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit);
FLINT_DLL void nmod_mat_solve_triu_recursive(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit);
FLINT_DLL void nmod_mat_solve_triu_classical(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit);
/* LU decomposition */
FLINT_DLL slong nmod_mat_lu(slong * P, nmod_mat_t A, int rank_check);
FLINT_DLL slong nmod_mat_lu_classical(slong * P, nmod_mat_t A, int rank_check);
FLINT_DLL slong nmod_mat_lu_recursive(slong * P, nmod_mat_t A, int rank_check);
/* Nonsingular solving */
FLINT_DLL int nmod_mat_solve(nmod_mat_t X, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL int nmod_mat_solve_vec(mp_ptr x, const nmod_mat_t A, mp_srcptr b);
/* Solving */
FLINT_DLL int nmod_mat_can_solve_inner(slong * rank, slong * prm, slong * piv,
nmod_mat_t X, const nmod_mat_t A, const nmod_mat_t B);
FLINT_DLL int nmod_mat_can_solve(nmod_mat_t X, const nmod_mat_t A,
const nmod_mat_t B);
/* Reduced row echelon form */
FLINT_DLL slong nmod_mat_rref(nmod_mat_t A);
FLINT_DLL slong _nmod_mat_rref(nmod_mat_t A, slong * pivots_nonpivots, slong * P);
FLINT_DLL slong nmod_mat_rref_classical(nmod_mat_t A);
FLINT_DLL slong _nmod_mat_rref_classical(nmod_mat_t A, slong * pivots_nonpivots);
FLINT_DLL slong nmod_mat_rref_storjohann(nmod_mat_t A);
FLINT_DLL slong _nmod_mat_rref_storjohann(nmod_mat_t A, slong * pivots_nonpivots);
FLINT_DLL slong nmod_mat_reduce_row(nmod_mat_t M, slong * P, slong * L, slong m);
/* Nullspace */
FLINT_DLL slong nmod_mat_nullspace(nmod_mat_t X, const nmod_mat_t A);
/* Howell form */
FLINT_DLL void nmod_mat_strong_echelon_form(nmod_mat_t A);
FLINT_DLL slong nmod_mat_howell_form(nmod_mat_t A);
/* Transforms */
FLINT_DLL void nmod_mat_similarity(nmod_mat_t M, slong r, ulong d);
/* Characteristic polynomial and minimal polynomial */
/* The following prototype actually lives in nmod_poly.h
*
* FLINT_DLL void nmod_mat_charpoly_danilevsky(nmod_poly_t p, const nmod_mat_t M);
*
* FLINT_DLL void nmod_mat_minpoly(nmod_poly_t p, const nmod_mat_t M);
*/
/* Tuning parameters *********************************************************/
/* Size at which pre-transposing becomes faster in classical multiplication */
#define NMOD_MAT_MUL_TRANSPOSE_CUTOFF 20
/* Cutoff between classical and recursive triangular solving */
#define NMOD_MAT_SOLVE_TRI_ROWS_CUTOFF 64
#define NMOD_MAT_SOLVE_TRI_COLS_CUTOFF 64
/* Cutoff between classical and recursive LU decomposition */
#define NMOD_MAT_LU_RECURSIVE_CUTOFF 4
/*
Suggested initial modulus size for multimodular algorithms. This should
be chosen so that we get the most number of bits per cycle
in matrix multiplication. On x86-64 it appears to be optimal to use
moduli giving nlimbs = 2. This should hold both in the classical
range and in Strassen blocks.
*/
#define NMOD_MAT_OPTIMAL_MODULUS_BITS (FLINT_BITS-5)
/* Inlines *******************************************************************/
FLINT_DLL void nmod_mat_set_entry(nmod_mat_t mat, slong i, slong j, mp_limb_t x);
#ifdef __cplusplus
}
#endif
#endif