/* Copyright (C) 2010 William Hart Copyright (C) 2010,2011 Fredrik Johansson Copyright (C) 2014 Ashish Kedia This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #ifndef NMOD_MAT_H #define NMOD_MAT_H #ifdef NMOD_MAT_INLINES_C #define NMOD_MAT_INLINE FLINT_DLL #else #define NMOD_MAT_INLINE static __inline__ #endif #undef ulong #define ulong ulongxx /* interferes with system includes */ #include #undef ulong #include #define ulong mp_limb_t #include "flint.h" #include "longlong.h" #include "ulong_extras.h" #include "nmod_vec.h" #include "fmpz.h" #include "thread_support.h" #ifdef __cplusplus extern "C" { #endif typedef struct { mp_limb_t * entries; slong r; slong c; mp_limb_t ** rows; nmod_t mod; } nmod_mat_struct; /* nmod_mat_t allows reference-like semantics for nmod_mat_struct */ typedef nmod_mat_struct nmod_mat_t[1]; #define nmod_mat_entry(mat,i,j) ((mat)->rows[(i)][(j)]) NMOD_MAT_INLINE mp_limb_t nmod_mat_get_entry(const nmod_mat_t mat, slong i, slong j) { return mat->rows[i][j]; } NMOD_MAT_INLINE mp_limb_t * nmod_mat_entry_ptr(const nmod_mat_t mat, slong i, slong j) { return mat->rows[i] + j; } /* See inlines.c */ NMOD_MAT_INLINE slong nmod_mat_nrows(const nmod_mat_t mat) { return mat->r; } NMOD_MAT_INLINE slong nmod_mat_ncols(const nmod_mat_t mat) { return mat->c; } NMOD_MAT_INLINE void _nmod_mat_set_mod(nmod_mat_t mat, mp_limb_t n) { mat->mod.n = n; count_leading_zeros(mat->mod.norm, n); invert_limb(mat->mod.ninv, n << mat->mod.norm); } /* Memory management */ FLINT_DLL void nmod_mat_init(nmod_mat_t mat, slong rows, slong cols, mp_limb_t n); FLINT_DLL void nmod_mat_init_set(nmod_mat_t mat, const nmod_mat_t src); FLINT_DLL void nmod_mat_clear(nmod_mat_t mat); FLINT_DLL void nmod_mat_one(nmod_mat_t mat); FLINT_DLL void nmod_mat_swap(nmod_mat_t mat1, nmod_mat_t mat2); NMOD_MAT_INLINE void nmod_mat_swap_entrywise(nmod_mat_t mat1, nmod_mat_t mat2) { slong i, j; for (i = 0; i < nmod_mat_nrows(mat1); i++) { mp_limb_t * row1 = mat1->rows[i]; mp_limb_t * row2 = mat2->rows[i]; for (j = 0; j < nmod_mat_ncols(mat1); j++) MP_LIMB_SWAP(row1[j], row2[j]); } } /* Windows and concatenation */ FLINT_DLL void nmod_mat_window_init(nmod_mat_t window, const nmod_mat_t mat, slong r1, slong c1, slong r2, slong c2); FLINT_DLL void nmod_mat_window_clear(nmod_mat_t window); FLINT_DLL void nmod_mat_concat_horizontal(nmod_mat_t res, const nmod_mat_t mat1, const nmod_mat_t mat2); FLINT_DLL void nmod_mat_concat_vertical(nmod_mat_t res, const nmod_mat_t mat1, const nmod_mat_t mat2); /* Random matrix generation */ FLINT_DLL void nmod_mat_randtest(nmod_mat_t mat, flint_rand_t state); FLINT_DLL void nmod_mat_randfull(nmod_mat_t mat, flint_rand_t state); FLINT_DLL int nmod_mat_randpermdiag(nmod_mat_t mat, flint_rand_t state, mp_srcptr diag, slong n); FLINT_DLL void nmod_mat_randrank(nmod_mat_t, flint_rand_t state, slong rank); FLINT_DLL void nmod_mat_randops(nmod_mat_t mat, slong count, flint_rand_t state); FLINT_DLL void nmod_mat_randtril(nmod_mat_t mat, flint_rand_t state, int unit); FLINT_DLL void nmod_mat_randtriu(nmod_mat_t mat, flint_rand_t state, int unit); FLINT_DLL void nmod_mat_print_pretty(const nmod_mat_t mat); FLINT_DLL int nmod_mat_equal(const nmod_mat_t mat1, const nmod_mat_t mat2); FLINT_DLL void nmod_mat_zero(nmod_mat_t mat); FLINT_DLL int nmod_mat_is_zero(const nmod_mat_t mat); NMOD_MAT_INLINE int nmod_mat_is_zero_row(const nmod_mat_t mat, slong i) { return _nmod_vec_is_zero(mat->rows[i], mat->c); } NMOD_MAT_INLINE int nmod_mat_is_empty(const nmod_mat_t mat) { return (mat->r == 0) || (mat->c == 0); } NMOD_MAT_INLINE int nmod_mat_is_square(const nmod_mat_t mat) { return (mat->r == mat->c); } FLINT_DLL void nmod_mat_set(nmod_mat_t B, const nmod_mat_t A); FLINT_DLL void nmod_mat_transpose(nmod_mat_t B, const nmod_mat_t A); /* Addition and subtraction */ FLINT_DLL void nmod_mat_add(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_sub(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_neg(nmod_mat_t B, const nmod_mat_t A); /* Matrix-scalar arithmetic */ FLINT_DLL void nmod_mat_scalar_mul(nmod_mat_t B, const nmod_mat_t A, mp_limb_t c); FLINT_DLL void nmod_mat_scalar_addmul_ui(nmod_mat_t dest, const nmod_mat_t X, const nmod_mat_t Y, const mp_limb_t b); /* deprecated */ #define nmod_mat_scalar_mul_add(dest, X, b, Y) nmod_mat_scalar_addmul_ui(dest, X, Y, b) NMOD_MAT_INLINE void nmod_mat_scalar_mul_fmpz(nmod_mat_t res, const nmod_mat_t M, const fmpz_t c) { fmpz_t d; fmpz_init(d); fmpz_mod_ui(d, c, res->mod.n); nmod_mat_scalar_mul(res, M, fmpz_get_ui(d)); fmpz_clear(d); } /* Matrix multiplication */ FLINT_DLL void nmod_mat_mul(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL int nmod_mat_mul_blas(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_mul_classical(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void _nmod_mat_mul_classical_threaded_pool_op(nmod_mat_t D, const nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B, int op, thread_pool_handle * threads, slong num_threads); FLINT_DLL void nmod_mat_mul_classical_threaded(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_mul_strassen(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void _nmod_mat_mul_classical_op(nmod_mat_t D, const nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B, int op); FLINT_DLL void nmod_mat_addmul(nmod_mat_t D, const nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_submul(nmod_mat_t D, const nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL void nmod_mat_mul_nmod_vec(mp_limb_t * c, const nmod_mat_t A, const mp_limb_t * b, slong blen); FLINT_DLL void nmod_mat_mul_nmod_vec_ptr(mp_limb_t * const * c, const nmod_mat_t A, const mp_limb_t * const * b, slong blen); FLINT_DLL void nmod_mat_nmod_vec_mul(mp_limb_t * c, const mp_limb_t * a, slong alen, const nmod_mat_t B); FLINT_DLL void nmod_mat_nmod_vec_mul_ptr(mp_limb_t * const * c, const mp_limb_t * const * a, slong alen, const nmod_mat_t B); /* Exponent */ FLINT_DLL void _nmod_mat_pow(nmod_mat_t dest, const nmod_mat_t mat, ulong pow); FLINT_DLL void nmod_mat_pow(nmod_mat_t dest, const nmod_mat_t mat, ulong pow); /* Trace */ FLINT_DLL mp_limb_t nmod_mat_trace(const nmod_mat_t mat); /* Determinant */ FLINT_DLL mp_limb_t _nmod_mat_det(nmod_mat_t A); FLINT_DLL mp_limb_t nmod_mat_det(const nmod_mat_t A); FLINT_DLL mp_limb_t _nmod_mat_det_howell(nmod_mat_t A); FLINT_DLL mp_limb_t nmod_mat_det_howell(const nmod_mat_t A); /* Rank */ FLINT_DLL slong nmod_mat_rank(const nmod_mat_t A); /* Inverse */ FLINT_DLL int nmod_mat_inv(nmod_mat_t B, const nmod_mat_t A); /* Permutations */ NMOD_MAT_INLINE void nmod_mat_swap_rows(nmod_mat_t mat, slong * perm, slong r, slong s) { if (r != s && !nmod_mat_is_empty(mat)) { mp_limb_t * u; slong t; if (perm) { t = perm[s]; perm[s] = perm[r]; perm[r] = t; } u = mat->rows[s]; mat->rows[s] = mat->rows[r]; mat->rows[r] = u; } } NMOD_MAT_INLINE void nmod_mat_invert_rows(nmod_mat_t mat, slong * perm) { slong i; for (i = 0; i < mat->r/2; i++) nmod_mat_swap_rows(mat, perm, i, mat->r - i - 1); } NMOD_MAT_INLINE void nmod_mat_swap_cols(nmod_mat_t mat, slong * perm, slong r, slong s) { if (r != s && !nmod_mat_is_empty(mat)) { slong t; if (perm) { t = perm[s]; perm[s] = perm[r]; perm[r] = t; } for (t = 0; t < mat->r; t++) { mp_limb_t c = mat->rows[t][r]; mat->rows[t][r] = mat->rows[t][s]; mat->rows[t][s] = c; } } } NMOD_MAT_INLINE void nmod_mat_invert_cols(nmod_mat_t mat, slong * perm) { if (!(nmod_mat_is_empty(mat))) { slong t; slong i; slong c = mat->c; slong k = mat->c/2; mp_limb_t e; if (perm) { for (i =0; i < k; i++) { t = perm[i]; perm[i] = perm[c - i]; perm[c - i] = t; } } for (t = 0; t < mat->r; t++) { for (i = 0; i < k; i++) { e = mat->rows[t][i]; mat->rows[t][i] = mat->rows[t][c - i - 1]; mat->rows[t][c - i - 1] = e; } } } } FLINT_DLL void nmod_mat_apply_permutation(nmod_mat_t A, slong * P, slong n); /* Triangular solving */ FLINT_DLL void nmod_mat_solve_tril(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit); FLINT_DLL void nmod_mat_solve_tril_recursive(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit); FLINT_DLL void nmod_mat_solve_tril_classical(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit); FLINT_DLL void nmod_mat_solve_triu(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit); FLINT_DLL void nmod_mat_solve_triu_recursive(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit); FLINT_DLL void nmod_mat_solve_triu_classical(nmod_mat_t X, const nmod_mat_t U, const nmod_mat_t B, int unit); /* LU decomposition */ FLINT_DLL slong nmod_mat_lu(slong * P, nmod_mat_t A, int rank_check); FLINT_DLL slong nmod_mat_lu_classical(slong * P, nmod_mat_t A, int rank_check); FLINT_DLL slong nmod_mat_lu_recursive(slong * P, nmod_mat_t A, int rank_check); /* Nonsingular solving */ FLINT_DLL int nmod_mat_solve(nmod_mat_t X, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL int nmod_mat_solve_vec(mp_ptr x, const nmod_mat_t A, mp_srcptr b); /* Solving */ FLINT_DLL int nmod_mat_can_solve_inner(slong * rank, slong * prm, slong * piv, nmod_mat_t X, const nmod_mat_t A, const nmod_mat_t B); FLINT_DLL int nmod_mat_can_solve(nmod_mat_t X, const nmod_mat_t A, const nmod_mat_t B); /* Reduced row echelon form */ FLINT_DLL slong nmod_mat_rref(nmod_mat_t A); FLINT_DLL slong _nmod_mat_rref(nmod_mat_t A, slong * pivots_nonpivots, slong * P); FLINT_DLL slong nmod_mat_rref_classical(nmod_mat_t A); FLINT_DLL slong _nmod_mat_rref_classical(nmod_mat_t A, slong * pivots_nonpivots); FLINT_DLL slong nmod_mat_rref_storjohann(nmod_mat_t A); FLINT_DLL slong _nmod_mat_rref_storjohann(nmod_mat_t A, slong * pivots_nonpivots); FLINT_DLL slong nmod_mat_reduce_row(nmod_mat_t M, slong * P, slong * L, slong m); /* Nullspace */ FLINT_DLL slong nmod_mat_nullspace(nmod_mat_t X, const nmod_mat_t A); /* Howell form */ FLINT_DLL void nmod_mat_strong_echelon_form(nmod_mat_t A); FLINT_DLL slong nmod_mat_howell_form(nmod_mat_t A); /* Transforms */ FLINT_DLL void nmod_mat_similarity(nmod_mat_t M, slong r, ulong d); /* Characteristic polynomial and minimal polynomial */ /* The following prototype actually lives in nmod_poly.h * * FLINT_DLL void nmod_mat_charpoly_danilevsky(nmod_poly_t p, const nmod_mat_t M); * * FLINT_DLL void nmod_mat_minpoly(nmod_poly_t p, const nmod_mat_t M); */ /* Tuning parameters *********************************************************/ /* Size at which pre-transposing becomes faster in classical multiplication */ #define NMOD_MAT_MUL_TRANSPOSE_CUTOFF 20 /* Cutoff between classical and recursive triangular solving */ #define NMOD_MAT_SOLVE_TRI_ROWS_CUTOFF 64 #define NMOD_MAT_SOLVE_TRI_COLS_CUTOFF 64 /* Cutoff between classical and recursive LU decomposition */ #define NMOD_MAT_LU_RECURSIVE_CUTOFF 4 /* Suggested initial modulus size for multimodular algorithms. This should be chosen so that we get the most number of bits per cycle in matrix multiplication. On x86-64 it appears to be optimal to use moduli giving nlimbs = 2. This should hold both in the classical range and in Strassen blocks. */ #define NMOD_MAT_OPTIMAL_MODULUS_BITS (FLINT_BITS-5) /* Inlines *******************************************************************/ FLINT_DLL void nmod_mat_set_entry(nmod_mat_t mat, slong i, slong j, mp_limb_t x); #ifdef __cplusplus } #endif #endif