/* Copyright (C) 2015 Tommy Hofmann Copyright (C) 2021 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_mat.h" #include "ulong_extras.h" /* We do no quite need the full Howell form. We just need to reduce to upper triangular form using row swaps and Euclidean row operations (i.e. that use the Euclidean xgcd to replace the pivot with its gcd with the entry in the row in question (mod n). Of course we need a special version of the Euclidean xgcd whose first cofactor is a unit mod n. */ /* Find s, t such that g = s*a - t*b is the gcd of a and b mod n and where s is a unit mod n. Assumes a and b are reduced mod n and no aliasing. */ static __inline__ mp_limb_t _nmod_xgcd_unit(mp_limb_t * s, mp_limb_t * t, mp_limb_t a, mp_limb_t b, nmod_t mod) { mp_limb_t g, ag, bg; if (a >= b) g = n_xgcd(s, t, a, b); else /* b > a */ { g = n_xgcd(t, s, b, a); *s = nmod_neg(*s, mod); *t = nmod_neg(*t, mod); } ag = a/g; bg = b/g; while (n_gcd(*s, mod.n) != 1) { *s = nmod_add(*s, bg, mod); *t = nmod_add(*t, ag, mod); } return g; } static __inline__ int _nmod_mat_pivot(nmod_mat_t A, slong start_row, slong col) { slong j; mp_ptr u; if (nmod_mat_entry(A, start_row, col) != 0) return 1; for (j = start_row + 1; j < A->r; j++) { if (nmod_mat_entry(A, j, col) != 0) { u = A->rows[j]; A->rows[j] = A->rows[start_row]; A->rows[start_row] = u; return -1; } } return 0; } /* test wether q*a = b mod N has a solution */ static int _n_is_divisible(mp_ptr q, mp_limb_t b, mp_limb_t a, nmod_t N) { mp_limb_t e, g; g = n_gcdinv(&e, a, N.n); if (( b % g ) == 0) { *q = nmod_mul(e, b/g, N); return 1; } return 0; } mp_limb_t _nmod_mat_det_howell(nmod_mat_t A) { mp_limb_t s, t, t1, det = 1, unit = 1; slong m, n, row, col, i, k; nmod_t mod = A->mod; if (nmod_mat_is_empty(A)) return mod.n != 1; n = A->r; m = A->c; row = col = 0; while (row < n && col < m) { int pivswap = _nmod_mat_pivot(A, row, col); if (pivswap == 0) return 0; if (pivswap == -1) det = nmod_neg(det, mod); for (i = row + 1; i < n; i++) { if (nmod_mat_entry(A, i, col) == 0) continue; if (_n_is_divisible(&s, nmod_mat_entry(A, i, col), nmod_mat_entry(A, row, col), mod)) { for (k = col; k < m; k++) { t = nmod_sub(nmod_mat_entry(A, i, k), nmod_mul(s, nmod_mat_entry(A, row, k), mod), mod); nmod_mat_entry(A, i, k) = t; } } else { _nmod_xgcd_unit(&s, &t, nmod_mat_entry(A, row, col), nmod_mat_entry(A, i, col), mod); /* now g = s*x - t*y mod n */ unit = nmod_mul(unit, s, mod); for (k = col; k < m; k++) { t1 = nmod_sub(nmod_mul(s, nmod_mat_entry(A, row, k), mod), nmod_mul(t, nmod_mat_entry(A, i, k), mod), mod); nmod_mat_entry(A, row, k) = t1; } /* now it's divisible, restart this row */ i--; continue; } } det = nmod_mul(det, nmod_mat_entry(A, row, col), mod); row++; col++; } unit = nmod_inv(unit, mod); return nmod_mul(det, unit, mod); } mp_limb_t nmod_mat_det_howell(const nmod_mat_t A) { nmod_mat_t tmp; mp_limb_t det; slong dim = A->r; if (dim != A->c) { flint_printf("Exception (nmod_mat_det_howell). Non-square matrix.\n"); flint_abort(); } nmod_mat_init_set(tmp, A); det = _nmod_mat_det_howell(tmp); nmod_mat_clear(tmp); return det; }