/*
Copyright (C) 2018 Daniel Schultz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "nmod_mpoly.h"
int
main(void)
{
int i, j, result, ret, max_threads = 5, tmul = 25;
FLINT_TEST_INIT(state);
flint_printf("divides....");
fflush(stdout);
/* Check f*g/g = f sparse */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
nmod_mpoly_ctx_t ctx;
nmod_mpoly_t f, g, h, k, hsave, gsave;
slong len, len1, len2;
flint_bitcnt_t exp_bits, exp_bits1, exp_bits2;
mp_limb_t modulus;
modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1;
modulus = n_randbits(state, modulus);
modulus = n_nextprime(modulus, 1);
nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus);
nmod_mpoly_init(f, ctx);
nmod_mpoly_init(g, ctx);
nmod_mpoly_init(h, ctx);
nmod_mpoly_init(k, ctx);
nmod_mpoly_init(hsave, ctx);
nmod_mpoly_init(gsave, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
len2 = n_randint(state, 100);
exp_bits = n_randint(state, 200) + 1;
exp_bits1 = n_randint(state, 200) + 1;
exp_bits2 = n_randint(state, 200) + 1;
for (j = 0; j < 4; j++)
{
nmod_mpoly_randtest_bits(f, state, len1, exp_bits1, ctx);
nmod_mpoly_randtest_bits(g, state, len2 + 1, exp_bits2, ctx);
if (nmod_mpoly_is_zero(g, ctx))
nmod_mpoly_one(g, ctx);
nmod_mpoly_randtest_bits(h, state, len, exp_bits, ctx);
nmod_mpoly_randtest_bits(k, state, len, exp_bits, ctx);
nmod_mpoly_mul(h, f, g, ctx);
nmod_mpoly_assert_canonical(h, ctx);
nmod_mpoly_set(hsave, h, ctx);
nmod_mpoly_set(gsave, g, ctx);
ret = nmod_mpoly_divides(k, h, g, ctx);
FLINT_ASSERT(ret == 0 || ret == 1);
nmod_mpoly_assert_canonical(k, ctx);
result = (ret == 1) && nmod_mpoly_equal(k, f, ctx);
if (!result)
{
printf("FAIL\n");
flint_printf("Check f*g/g = f sparse\n"
"i = %wd, j = %wd\n", i ,j);
flint_abort();
}
if ( !nmod_mpoly_equal(h, hsave, ctx)
|| !nmod_mpoly_equal(g, gsave, ctx))
{
printf("FAIL\n");
flint_printf("Check f*g/g = f sparse input modification\n"
"i = %wd, j = %wd\n", i ,j);
flint_abort();
}
}
flint_set_num_threads(n_randint(state, max_threads) + 1);
nmod_mpoly_clear(f, ctx);
nmod_mpoly_clear(g, ctx);
nmod_mpoly_clear(h, ctx);
nmod_mpoly_clear(k, ctx);
nmod_mpoly_clear(hsave, ctx);
nmod_mpoly_clear(gsave, ctx);
nmod_mpoly_ctx_clear(ctx);
}
/* Check f*g/g = f dense */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
nmod_mpoly_ctx_t ctx;
nmod_mpoly_t f, g, h, k;
slong len, len1, len2;
mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2;
mp_limb_t modulus;
modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1;
modulus = n_randbits(state, modulus);
modulus = n_nextprime(modulus, 1);
nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus);
nmod_mpoly_init(f, ctx);
nmod_mpoly_init(g, ctx);
nmod_mpoly_init(h, ctx);
nmod_mpoly_init(k, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
len2 = n_randint(state, 100);
max_bound = 1 + 150/ctx->minfo->nvars/ctx->minfo->nvars;
exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
for (j = 0; j < ctx->minfo->nvars; j++)
{
exp_bound[j] = UWORD(1) << (FLINT_BITS - 1);
exp_bound1[j] = n_randint(state, max_bound) + 1;
exp_bound2[j] = n_randint(state, max_bound) + 1;
}
for (j = 0; j < 4; j++)
{
nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx);
nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx);
if (nmod_mpoly_is_zero(g, ctx))
nmod_mpoly_one(g, ctx);
nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx);
nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx);
flint_set_num_threads(n_randint(state, max_threads) + 1);
nmod_mpoly_mul(h, f, g, ctx);
nmod_mpoly_assert_canonical(h, ctx);
ret = nmod_mpoly_divides(k, h, g, ctx);
FLINT_ASSERT(ret == 0 || ret == 1);
nmod_mpoly_assert_canonical(k, ctx);
result = (ret == 1) && nmod_mpoly_equal(k, f, ctx);
if (!result)
{
printf("FAIL\n");
flint_printf("Check f*g/g = f dense\ni = %wd, j = %wd\n", i ,j);
flint_abort();
}
}
flint_free(exp_bound);
flint_free(exp_bound1);
flint_free(exp_bound2);
nmod_mpoly_clear(f, ctx);
nmod_mpoly_clear(g, ctx);
nmod_mpoly_clear(h, ctx);
nmod_mpoly_clear(k, ctx);
nmod_mpoly_ctx_clear(ctx);
}
/* Check divisibility of random polys */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
nmod_mpoly_ctx_t ctx;
nmod_mpoly_t f, g, h, k;
slong len, len1, len2;
mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2;
mp_limb_t modulus;
fmpz * shifts, * strides;
modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1;
modulus = n_randbits(state, modulus);
modulus = n_nextprime(modulus, 1);
nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus);
nmod_mpoly_init(f, ctx);
nmod_mpoly_init(g, ctx);
nmod_mpoly_init(h, ctx);
nmod_mpoly_init(k, ctx);
len = n_randint(state, 50);
len1 = n_randint(state, 50);
len2 = n_randint(state, 50);
max_bound = 1 + 20/ctx->minfo->nvars;
exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
shifts = (fmpz *) flint_malloc(ctx->minfo->nvars*sizeof(fmpz));
strides = (fmpz *) flint_malloc(ctx->minfo->nvars*sizeof(fmpz));
for (j = 0; j < ctx->minfo->nvars; j++)
{
exp_bound[j] = UWORD(1) << (FLINT_BITS - 1);
exp_bound1[j] = n_randint(state, max_bound) + 1;
exp_bound2[j] = n_randint(state, max_bound) + 1;
fmpz_init(shifts + j);
fmpz_init(strides + j);
fmpz_randtest_unsigned(shifts + j, state, 100);
fmpz_randtest_unsigned(strides + j, state, 100);
fmpz_add_ui(strides + j, strides + j, 1);
}
for (j = 0; j < 4; j++)
{
nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx);
nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx);
if (nmod_mpoly_is_zero(g, ctx))
nmod_mpoly_one(g, ctx);
nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx);
nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx);
nmod_mpoly_inflate(f, f, shifts, strides, ctx);
nmod_mpoly_inflate(g, g, shifts, strides, ctx);
ret = nmod_mpoly_divides(h, f, g, ctx);
FLINT_ASSERT(ret == 0 || ret == 1);
if (ret == 0)
continue;
nmod_mpoly_assert_canonical(h, ctx);
nmod_mpoly_mul(k, h, g, ctx);
nmod_mpoly_assert_canonical(k, ctx);
result = nmod_mpoly_equal(k, f, ctx);
if (!result)
{
printf("FAIL\n");
flint_printf("Check divisibility of random polys\n"
"i = %wd, j = %wd\n", i ,j);
flint_abort();
}
}
for (j = 0; j < ctx->minfo->nvars; j++)
{
fmpz_clear(shifts + j);
fmpz_clear(strides + j);
}
flint_free(shifts);
flint_free(strides);
flint_free(exp_bound);
flint_free(exp_bound1);
flint_free(exp_bound2);
nmod_mpoly_clear(f, ctx);
nmod_mpoly_clear(g, ctx);
nmod_mpoly_clear(h, ctx);
nmod_mpoly_clear(k, ctx);
nmod_mpoly_ctx_clear(ctx);
}
/* Check f*g/g = f aliasing first argument */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
nmod_mpoly_ctx_t ctx;
nmod_mpoly_t f, g, h, k;
slong len, len1, len2;
mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2;
mp_limb_t modulus;
modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1;
modulus = n_randbits(state, modulus);
modulus = n_nextprime(modulus, 1);
nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus);
nmod_mpoly_init(f, ctx);
nmod_mpoly_init(g, ctx);
nmod_mpoly_init(h, ctx);
nmod_mpoly_init(k, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
len2 = n_randint(state, 100);
max_bound = 1 + 100/ctx->minfo->nvars/ctx->minfo->nvars;
exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
for (j = 0; j < ctx->minfo->nvars; j++)
{
exp_bound[j] = UWORD(1) << (FLINT_BITS - 1);
exp_bound1[j] = n_randint(state, max_bound) + 1;
exp_bound2[j] = n_randint(state, max_bound) + 1;
}
for (j = 0; j < 4; j++)
{
nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx);
nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx);
if (nmod_mpoly_is_zero(g, ctx))
nmod_mpoly_one(g, ctx);
nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx);
nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx);
flint_set_num_threads(n_randint(state, max_threads) + 1);
nmod_mpoly_set(h, f, ctx);
nmod_mpoly_mul(h, h, g, ctx);
nmod_mpoly_assert_canonical(h, ctx);
ret = nmod_mpoly_divides(k, h, g, ctx);
FLINT_ASSERT(ret == 0 || ret == 1);
nmod_mpoly_assert_canonical(k, ctx);
result = (ret == 1) && nmod_mpoly_equal(k, f, ctx);
if (!result)
{
printf("FAIL\n");
flint_printf("Check f*g/g = f aliasing first\n"
"i = %wd, j = %wd\n", i ,j);
flint_abort();
}
}
flint_free(exp_bound);
flint_free(exp_bound1);
flint_free(exp_bound2);
nmod_mpoly_clear(f, ctx);
nmod_mpoly_clear(g, ctx);
nmod_mpoly_clear(h, ctx);
nmod_mpoly_clear(k, ctx);
nmod_mpoly_ctx_clear(ctx);
}
/* Check f*g/g = f aliasing second argument */
for (i = 0; i < tmul * flint_test_multiplier(); i++)
{
nmod_mpoly_ctx_t ctx;
nmod_mpoly_t f, g, h, k;
slong len, len1, len2;
mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2;
mp_limb_t modulus;
modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1;
modulus = n_randbits(state, modulus);
modulus = n_nextprime(modulus, 1);
nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus);
nmod_mpoly_init(f, ctx);
nmod_mpoly_init(g, ctx);
nmod_mpoly_init(h, ctx);
nmod_mpoly_init(k, ctx);
len = n_randint(state, 100);
len1 = n_randint(state, 100);
len2 = n_randint(state, 100);
max_bound = 1 + 100/ctx->minfo->nvars/ctx->minfo->nvars;
exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t));
for (j = 0; j < ctx->minfo->nvars; j++)
{
exp_bound[j] = UWORD(1) << (FLINT_BITS - 1);
exp_bound1[j] = n_randint(state, max_bound) + 1;
exp_bound2[j] = n_randint(state, max_bound) + 1;
}
for (j = 0; j < 4; j++)
{
nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx);
nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx);
if (nmod_mpoly_is_zero(g, ctx))
nmod_mpoly_one(g, ctx);
nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx);
nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx);
nmod_mpoly_set(h, g, ctx);
nmod_mpoly_mul(h, f, h, ctx);
nmod_mpoly_assert_canonical(h, ctx);
ret = nmod_mpoly_divides(k, h, g, ctx);
FLINT_ASSERT(ret == 0 || ret == 1);
nmod_mpoly_assert_canonical(k, ctx);
result = (ret == 1) && nmod_mpoly_equal(k, f, ctx);
if (!result)
{
printf("FAIL\n");
flint_printf("Check f*g/g = f aliasing second\n"
"i = %wd, j = %wd\n", i ,j);
flint_abort();
}
}
flint_free(exp_bound);
flint_free(exp_bound1);
flint_free(exp_bound2);
nmod_mpoly_clear(f, ctx);
nmod_mpoly_clear(g, ctx);
nmod_mpoly_clear(h, ctx);
nmod_mpoly_clear(k, ctx);
nmod_mpoly_ctx_clear(ctx);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}