/* Copyright (C) 2018 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "nmod_mpoly.h" int main(void) { int i, j, result, ret, max_threads = 5, tmul = 25; FLINT_TEST_INIT(state); flint_printf("divides...."); fflush(stdout); /* Check f*g/g = f sparse */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t f, g, h, k, hsave, gsave; slong len, len1, len2; flint_bitcnt_t exp_bits, exp_bits1, exp_bits2; mp_limb_t modulus; modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1; modulus = n_randbits(state, modulus); modulus = n_nextprime(modulus, 1); nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(h, ctx); nmod_mpoly_init(k, ctx); nmod_mpoly_init(hsave, ctx); nmod_mpoly_init(gsave, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); len2 = n_randint(state, 100); exp_bits = n_randint(state, 200) + 1; exp_bits1 = n_randint(state, 200) + 1; exp_bits2 = n_randint(state, 200) + 1; for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bits(f, state, len1, exp_bits1, ctx); nmod_mpoly_randtest_bits(g, state, len2 + 1, exp_bits2, ctx); if (nmod_mpoly_is_zero(g, ctx)) nmod_mpoly_one(g, ctx); nmod_mpoly_randtest_bits(h, state, len, exp_bits, ctx); nmod_mpoly_randtest_bits(k, state, len, exp_bits, ctx); nmod_mpoly_mul(h, f, g, ctx); nmod_mpoly_assert_canonical(h, ctx); nmod_mpoly_set(hsave, h, ctx); nmod_mpoly_set(gsave, g, ctx); ret = nmod_mpoly_divides(k, h, g, ctx); FLINT_ASSERT(ret == 0 || ret == 1); nmod_mpoly_assert_canonical(k, ctx); result = (ret == 1) && nmod_mpoly_equal(k, f, ctx); if (!result) { printf("FAIL\n"); flint_printf("Check f*g/g = f sparse\n" "i = %wd, j = %wd\n", i ,j); flint_abort(); } if ( !nmod_mpoly_equal(h, hsave, ctx) || !nmod_mpoly_equal(g, gsave, ctx)) { printf("FAIL\n"); flint_printf("Check f*g/g = f sparse input modification\n" "i = %wd, j = %wd\n", i ,j); flint_abort(); } } flint_set_num_threads(n_randint(state, max_threads) + 1); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(h, ctx); nmod_mpoly_clear(k, ctx); nmod_mpoly_clear(hsave, ctx); nmod_mpoly_clear(gsave, ctx); nmod_mpoly_ctx_clear(ctx); } /* Check f*g/g = f dense */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t f, g, h, k; slong len, len1, len2; mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2; mp_limb_t modulus; modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1; modulus = n_randbits(state, modulus); modulus = n_nextprime(modulus, 1); nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(h, ctx); nmod_mpoly_init(k, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); len2 = n_randint(state, 100); max_bound = 1 + 150/ctx->minfo->nvars/ctx->minfo->nvars; exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); for (j = 0; j < ctx->minfo->nvars; j++) { exp_bound[j] = UWORD(1) << (FLINT_BITS - 1); exp_bound1[j] = n_randint(state, max_bound) + 1; exp_bound2[j] = n_randint(state, max_bound) + 1; } for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx); nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx); if (nmod_mpoly_is_zero(g, ctx)) nmod_mpoly_one(g, ctx); nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx); nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx); flint_set_num_threads(n_randint(state, max_threads) + 1); nmod_mpoly_mul(h, f, g, ctx); nmod_mpoly_assert_canonical(h, ctx); ret = nmod_mpoly_divides(k, h, g, ctx); FLINT_ASSERT(ret == 0 || ret == 1); nmod_mpoly_assert_canonical(k, ctx); result = (ret == 1) && nmod_mpoly_equal(k, f, ctx); if (!result) { printf("FAIL\n"); flint_printf("Check f*g/g = f dense\ni = %wd, j = %wd\n", i ,j); flint_abort(); } } flint_free(exp_bound); flint_free(exp_bound1); flint_free(exp_bound2); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(h, ctx); nmod_mpoly_clear(k, ctx); nmod_mpoly_ctx_clear(ctx); } /* Check divisibility of random polys */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t f, g, h, k; slong len, len1, len2; mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2; mp_limb_t modulus; fmpz * shifts, * strides; modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1; modulus = n_randbits(state, modulus); modulus = n_nextprime(modulus, 1); nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(h, ctx); nmod_mpoly_init(k, ctx); len = n_randint(state, 50); len1 = n_randint(state, 50); len2 = n_randint(state, 50); max_bound = 1 + 20/ctx->minfo->nvars; exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); shifts = (fmpz *) flint_malloc(ctx->minfo->nvars*sizeof(fmpz)); strides = (fmpz *) flint_malloc(ctx->minfo->nvars*sizeof(fmpz)); for (j = 0; j < ctx->minfo->nvars; j++) { exp_bound[j] = UWORD(1) << (FLINT_BITS - 1); exp_bound1[j] = n_randint(state, max_bound) + 1; exp_bound2[j] = n_randint(state, max_bound) + 1; fmpz_init(shifts + j); fmpz_init(strides + j); fmpz_randtest_unsigned(shifts + j, state, 100); fmpz_randtest_unsigned(strides + j, state, 100); fmpz_add_ui(strides + j, strides + j, 1); } for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx); nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx); if (nmod_mpoly_is_zero(g, ctx)) nmod_mpoly_one(g, ctx); nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx); nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx); nmod_mpoly_inflate(f, f, shifts, strides, ctx); nmod_mpoly_inflate(g, g, shifts, strides, ctx); ret = nmod_mpoly_divides(h, f, g, ctx); FLINT_ASSERT(ret == 0 || ret == 1); if (ret == 0) continue; nmod_mpoly_assert_canonical(h, ctx); nmod_mpoly_mul(k, h, g, ctx); nmod_mpoly_assert_canonical(k, ctx); result = nmod_mpoly_equal(k, f, ctx); if (!result) { printf("FAIL\n"); flint_printf("Check divisibility of random polys\n" "i = %wd, j = %wd\n", i ,j); flint_abort(); } } for (j = 0; j < ctx->minfo->nvars; j++) { fmpz_clear(shifts + j); fmpz_clear(strides + j); } flint_free(shifts); flint_free(strides); flint_free(exp_bound); flint_free(exp_bound1); flint_free(exp_bound2); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(h, ctx); nmod_mpoly_clear(k, ctx); nmod_mpoly_ctx_clear(ctx); } /* Check f*g/g = f aliasing first argument */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t f, g, h, k; slong len, len1, len2; mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2; mp_limb_t modulus; modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1; modulus = n_randbits(state, modulus); modulus = n_nextprime(modulus, 1); nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(h, ctx); nmod_mpoly_init(k, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); len2 = n_randint(state, 100); max_bound = 1 + 100/ctx->minfo->nvars/ctx->minfo->nvars; exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); for (j = 0; j < ctx->minfo->nvars; j++) { exp_bound[j] = UWORD(1) << (FLINT_BITS - 1); exp_bound1[j] = n_randint(state, max_bound) + 1; exp_bound2[j] = n_randint(state, max_bound) + 1; } for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx); nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx); if (nmod_mpoly_is_zero(g, ctx)) nmod_mpoly_one(g, ctx); nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx); nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx); flint_set_num_threads(n_randint(state, max_threads) + 1); nmod_mpoly_set(h, f, ctx); nmod_mpoly_mul(h, h, g, ctx); nmod_mpoly_assert_canonical(h, ctx); ret = nmod_mpoly_divides(k, h, g, ctx); FLINT_ASSERT(ret == 0 || ret == 1); nmod_mpoly_assert_canonical(k, ctx); result = (ret == 1) && nmod_mpoly_equal(k, f, ctx); if (!result) { printf("FAIL\n"); flint_printf("Check f*g/g = f aliasing first\n" "i = %wd, j = %wd\n", i ,j); flint_abort(); } } flint_free(exp_bound); flint_free(exp_bound1); flint_free(exp_bound2); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(h, ctx); nmod_mpoly_clear(k, ctx); nmod_mpoly_ctx_clear(ctx); } /* Check f*g/g = f aliasing second argument */ for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t f, g, h, k; slong len, len1, len2; mp_limb_t max_bound, * exp_bound, * exp_bound1, * exp_bound2; mp_limb_t modulus; modulus = n_randint(state, (i % 4 == 0) ? 4: FLINT_BITS - 1) + 1; modulus = n_randbits(state, modulus); modulus = n_nextprime(modulus, 1); nmod_mpoly_ctx_init_rand(ctx, state, 6, modulus); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(h, ctx); nmod_mpoly_init(k, ctx); len = n_randint(state, 100); len1 = n_randint(state, 100); len2 = n_randint(state, 100); max_bound = 1 + 100/ctx->minfo->nvars/ctx->minfo->nvars; exp_bound = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound1 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); exp_bound2 = (mp_limb_t *) flint_malloc(ctx->minfo->nvars*sizeof(mp_limb_t)); for (j = 0; j < ctx->minfo->nvars; j++) { exp_bound[j] = UWORD(1) << (FLINT_BITS - 1); exp_bound1[j] = n_randint(state, max_bound) + 1; exp_bound2[j] = n_randint(state, max_bound) + 1; } for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bounds(f, state, len1, exp_bound1, ctx); nmod_mpoly_randtest_bounds(g, state, len2 + 1, exp_bound2, ctx); if (nmod_mpoly_is_zero(g, ctx)) nmod_mpoly_one(g, ctx); nmod_mpoly_randtest_bounds(h, state, len, exp_bound, ctx); nmod_mpoly_randtest_bounds(k, state, len, exp_bound, ctx); nmod_mpoly_set(h, g, ctx); nmod_mpoly_mul(h, f, h, ctx); nmod_mpoly_assert_canonical(h, ctx); ret = nmod_mpoly_divides(k, h, g, ctx); FLINT_ASSERT(ret == 0 || ret == 1); nmod_mpoly_assert_canonical(k, ctx); result = (ret == 1) && nmod_mpoly_equal(k, f, ctx); if (!result) { printf("FAIL\n"); flint_printf("Check f*g/g = f aliasing second\n" "i = %wd, j = %wd\n", i ,j); flint_abort(); } } flint_free(exp_bound); flint_free(exp_bound1); flint_free(exp_bound2); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(h, ctx); nmod_mpoly_clear(k, ctx); nmod_mpoly_ctx_clear(ctx); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }