/* Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "nmod_mpoly_factor.h" static void nmod_mpoly_factor_mul_mpoly_fmpz( nmod_mpoly_factor_t fac, const nmod_mpoly_t a, const fmpz_t e, const nmod_mpoly_ctx_t ctx) { if (nmod_mpoly_is_ui(a, ctx)) { ulong t = nmod_mpoly_get_ui(a, ctx); t = nmod_pow_fmpz(t, e, ctx->mod); fac->constant = nmod_mul(fac->constant, t, ctx->mod); return; } else { nmod_mpoly_factor_append_fmpz(fac, a, e, ctx); } } #if FLINT_WANT_ASSERT /* return: 0 no 1 yes -1 don't know */ static int nmod_mpoly_factor_is_pairwise_prime( const nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx) { int result; slong i, j; nmod_mpoly_t g; nmod_mpoly_init(g, ctx); for (i = 0; i + 1 < f->num; i++) for (j = i + 1; j < f->num; j++) { /* make sure factors are monic */ if (f->poly[i].length < 1 || f->poly[j].length < 1 || f->poly[i].coeffs[0] != 1 || f->poly[j].coeffs[0] != 1) { result = 0; goto cleanup; } if (nmod_mpoly_gcd(g, f->poly + i, f->poly + j, ctx)) { if (!nmod_mpoly_is_one(g, ctx)) { result = 0; goto cleanup; } } else { result = -1; goto cleanup; } } result = 1; cleanup: nmod_mpoly_clear(g, ctx); return result; } #endif /* b and c are pairwise prime produce a=b*c pairwise prime and return 1 else return 0 with a undefined */ static int nmod_mpoly_factor_mul_pairwise_prime( nmod_mpoly_factor_t a, const nmod_mpoly_factor_t b, const nmod_mpoly_factor_t c, const nmod_mpoly_ctx_t ctx) { int success; slong i, j; nmod_mpoly_t T1, T2; nmod_mpoly_struct * g; fmpz_t t; if (a == b || a == c) { nmod_mpoly_factor_t ta; nmod_mpoly_factor_init(ta, ctx); success = nmod_mpoly_factor_mul_pairwise_prime(ta, b, c, ctx); nmod_mpoly_factor_swap(a, ta, ctx); nmod_mpoly_factor_clear(ta, ctx); return success; } fmpz_init(t); nmod_mpoly_init(T1, ctx); nmod_mpoly_init(T2, ctx); FLINT_ASSERT(nmod_mpoly_factor_is_pairwise_prime(b, ctx) == 1); FLINT_ASSERT(nmod_mpoly_factor_is_pairwise_prime(c, ctx) == 1); g = (nmod_mpoly_struct *) flint_malloc(b->num*c->num*sizeof(nmod_mpoly_struct)); /* g[i,j] = gcd(b[i], c[j]) */ for (i = 0; i < b->num; i++) for (j = 0; j < c->num; j++) nmod_mpoly_init(g + i*c->num + j, ctx); a->constant = nmod_mul(b->constant, c->constant, ctx->mod); a->num = 0; for (i = 0; i < b->num; i++) for (j = 0; j < c->num; j++) { if (!nmod_mpoly_gcd(g + i*c->num + j, b->poly + i, c->poly + j, ctx)) { success = 0; goto cleanup; } fmpz_add(t, b->exp + i, c->exp + j); nmod_mpoly_factor_mul_mpoly_fmpz(a, g + i*c->num + j, t, ctx); } for (i = 0; i < b->num; i++) { nmod_mpoly_set(T1, b->poly + i, ctx); for (j = 0; j < c->num; j++) { success = nmod_mpoly_divides(T1, T1, g + i*c->num + j, ctx); FLINT_ASSERT(success); } nmod_mpoly_factor_mul_mpoly_fmpz(a, T1, b->exp + i, ctx); } for (j = 0; j < c->num; j++) { nmod_mpoly_set(T1, c->poly + j, ctx); for (i = 0; i < b->num; i++) { success = nmod_mpoly_divides(T1, T1, g + i*c->num + j, ctx); FLINT_ASSERT(success); } nmod_mpoly_factor_mul_mpoly_fmpz(a, T1, c->exp + j, ctx); } success = 1; cleanup: for (i = 0; i < b->num; i++) for (j = 0; j < c->num; j++) nmod_mpoly_clear(g + i*c->num + j, ctx); flint_free(g); nmod_mpoly_clear(T1, ctx); nmod_mpoly_clear(T2, ctx); fmpz_clear(t); if (success) { nmod_mpoly_t ae, be, ce; nmod_mpoly_init(ae, ctx); nmod_mpoly_init(be, ctx); nmod_mpoly_init(ce, ctx); FLINT_ASSERT(nmod_mpoly_factor_is_pairwise_prime(a, ctx) == 1); nmod_mpoly_factor_expand(be, b, ctx); nmod_mpoly_factor_expand(ce, c, ctx); nmod_mpoly_mul(ae, be, ce, ctx); FLINT_ASSERT(nmod_mpoly_factor_matches(ae, a, ctx)); nmod_mpoly_clear(ae, ctx); nmod_mpoly_clear(be, ctx); nmod_mpoly_clear(ce, ctx); } return success; } /* a has zero derivative wrt gen(i) for all i for which vars_left[i] = 0 gcd(a, derivative(a, gen(var))) = 1 sep = false: just tack on a sep = true: make sure either 1. derivative(a, gen(var)) = 0, or 2. gcd(a, derivative(a, gen(i))) = 1 holds for the other factors for all i for which vars_left[i] != 0 */ static int _append_factor_sep( nmod_mpoly_factor_t f, nmod_mpoly_t a, ulong k, int * vars_left, const nmod_mpoly_ctx_t ctx, int sep, nmod_mpoly_t t) /* temp */ { slong v, org = f->num; if (nmod_mpoly_is_ui(a, ctx)) { FLINT_ASSERT(nmod_mpoly_is_one(a, ctx)); return 1; } nmod_mpoly_factor_fit_length(f, org + 1, ctx); nmod_mpoly_swap(f->poly + org, a, ctx); fmpz_set_ui(f->exp + org, k); f->num = org + 1; if (!sep) return 1; for (v = 0; v < ctx->minfo->nvars; v++) { slong i = org; if (!vars_left[v]) continue; while (i < f->num) { nmod_mpoly_derivative(t, f->poly + i, v, ctx); if (nmod_mpoly_is_zero(t, ctx)) { /* f[i] has zero derivative */ i++; continue; } nmod_mpoly_factor_fit_length(f, f->num + 1, ctx); fmpz_set_ui(f->exp + f->num, k); if (!nmod_mpoly_gcd_cofactors(f->poly + f->num, f->poly + i, t, f->poly + i, t, ctx)) { return 0; } if (nmod_mpoly_is_ui(f->poly + f->num, ctx)) { /* f[i] is comprime with its derivative */ i++; } else { /* f[i] and f[end] at least got smaller */ f->num++; } } } return 1; } int _nmod_mpoly_factor_separable( nmod_mpoly_factor_t f, const nmod_mpoly_t A, const nmod_mpoly_ctx_t ctx, int sep) { int success; slong v, var, j; ulong k; int * vars_left; fmpz * shift, * stride; nmod_mpoly_factor_t Tf; fmpz_t g, gr, p, pk; nmod_mpoly_t B, C, U, V, W, G; FLINT_ASSERT(A->length > 0); FLINT_ASSERT(A->coeffs[0] == 1); nmod_mpoly_init(B, ctx); nmod_mpoly_init(C, ctx); nmod_mpoly_init(U, ctx); nmod_mpoly_init(V, ctx); nmod_mpoly_init(W, ctx); nmod_mpoly_init(G, ctx); fmpz_init_set_ui(p, ctx->mod.n); fmpz_init(pk); fmpz_init(g); fmpz_init(gr); nmod_mpoly_factor_init(Tf, ctx); shift = _fmpz_vec_init(ctx->minfo->nvars); stride = _fmpz_vec_init(ctx->minfo->nvars); vars_left = FLINT_ARRAY_ALLOC(ctx->minfo->nvars, int); for (v = 0; v < ctx->minfo->nvars; v++) vars_left[v] = 1; nmod_mpoly_factor_one(f, ctx); nmod_mpoly_set(C, A, ctx); for (j = 0; j < ctx->minfo->nvars; j++) { /* take the next variable with shortest derivative */ var = -1; for (v = 0; v < ctx->minfo->nvars; v++) { if (!vars_left[v]) continue; nmod_mpoly_derivative(U, C, v, ctx); if (var < 0 || U->length < G->length) { var = v; nmod_mpoly_swap(G, U, ctx); } } FLINT_ASSERT(var >= 0); FLINT_ASSERT(vars_left[var] == 1); vars_left[var] = 0; success = nmod_mpoly_gcd_cofactors(C, W, V, C, G, ctx); if (!success) goto cleanup; for (k = 1; k + 1 < ctx->mod.n && !(nmod_mpoly_derivative(G, W, var, ctx), nmod_mpoly_sub(U, V, G, ctx), nmod_mpoly_is_zero(U, ctx)); k++) { success = nmod_mpoly_gcd_cofactors(G, W, V, W, U, ctx); if (!success) goto cleanup; success = _append_factor_sep(f, G, k, vars_left, ctx, sep, U); if (!success) goto cleanup; if (!nmod_mpoly_is_one(W, ctx)) { success = nmod_mpoly_divides(U, C, W, ctx); FLINT_ASSERT(success); nmod_mpoly_swap(C, U, ctx); } } success = _append_factor_sep(f, W, k, vars_left, ctx, sep, U); if (!success) goto cleanup; } if (nmod_mpoly_is_ui(C, ctx)) { FLINT_ASSERT(nmod_mpoly_is_one(C, ctx)); } else { nmod_mpoly_deflation(shift, stride, C, ctx); fmpz_zero(g); for (var = 0; var < ctx->minfo->nvars; var++) { fmpz_gcd(g, g, stride + var); fmpz_gcd(g, g, shift + var); } fmpz_pow_ui(pk, p, fmpz_remove(gr, g, p)); FLINT_ASSERT(fmpz_cmp_ui(pk, 1) > 0); for (var = 0; var < ctx->minfo->nvars; var++) { fmpz_set(stride + var, pk); fmpz_zero(shift + var); } nmod_mpoly_deflate(C, C, shift, stride, ctx); success = _nmod_mpoly_factor_separable(Tf, C, ctx, sep); if (!success) goto cleanup; /* f *= Tf^pk */ FLINT_ASSERT(Tf->constant == 1); _fmpz_vec_scalar_mul_fmpz(Tf->exp, Tf->exp, Tf->num, pk); nmod_mpoly_factor_mul_pairwise_prime(f, f, Tf, ctx); } success = 1; cleanup: nmod_mpoly_clear(C, ctx); nmod_mpoly_clear(U, ctx); nmod_mpoly_clear(V, ctx); nmod_mpoly_clear(W, ctx); nmod_mpoly_clear(G, ctx); fmpz_clear(p); fmpz_clear(pk); fmpz_clear(g); fmpz_clear(gr); nmod_mpoly_factor_clear(Tf, ctx); _fmpz_vec_clear(shift, ctx->minfo->nvars); _fmpz_vec_clear(stride, ctx->minfo->nvars); flint_free(vars_left); return success; } /* if sep = true, each returned factor should satisfy: (1) monic (2) primitive wrt each variable (3) for all i, derivative(a, gen(i)) = 0, or gcd(a, derivative(a, gen(i))) = 1 (4) there is at least i for which derivative(a, gen(i)) != 0 otherwise, the factors are just squarefree */ int nmod_mpoly_factor_separable( nmod_mpoly_factor_t f, const nmod_mpoly_t A, const nmod_mpoly_ctx_t ctx, int sep) { int success; slong i, j; nmod_mpoly_factor_t g, t; if (!nmod_mpoly_factor_content(f, A, ctx)) return 0; nmod_mpoly_factor_init(g, ctx); nmod_mpoly_factor_init(t, ctx); g->constant = f->constant; g->num = 0; for (j = 0; j < f->num; j++) { success = _nmod_mpoly_factor_separable(t, f->poly + j, ctx, sep); if (!success) goto cleanup; FLINT_ASSERT(1 == t->constant); nmod_mpoly_factor_fit_length(g, g->num + t->num, ctx); for (i = 0; i < t->num; i++) { fmpz_mul(g->exp + g->num, t->exp + i, f->exp + j); nmod_mpoly_swap(g->poly + g->num, t->poly + i, ctx); g->num++; } } nmod_mpoly_factor_swap(f, g, ctx); success = 1; cleanup: nmod_mpoly_factor_clear(t, ctx); nmod_mpoly_factor_clear(g, ctx); FLINT_ASSERT(!success || nmod_mpoly_factor_matches(A, f, ctx)); return success; } int nmod_mpoly_factor_squarefree( nmod_mpoly_factor_t f, const nmod_mpoly_t A, const nmod_mpoly_ctx_t ctx) { return nmod_mpoly_factor_separable(f, A, ctx, 0); }