/* Copyright (C) 2021 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mod_mpoly_factor.h" int compute_gcd( nmod_mpoly_t G, const nmod_mpoly_t A, const nmod_mpoly_t B, const nmod_mpoly_ctx_t ctx) { slong i; flint_bitcnt_t wbits; flint_rand_t state; int success = 0; nmod_mpoly_ctx_t lctx; nmod_mpoly_t Al, Bl, Gl, Abarl, Bbarl; nmod_mpoly_t Ac, Bc, Gc; ulong * shift, * stride; slong * perm; if (nmod_mpoly_is_zero(A, ctx)) { if (nmod_mpoly_is_zero(B, ctx)) nmod_mpoly_zero(G, ctx); else nmod_mpoly_make_monic(G, B, ctx); return 1; } if (nmod_mpoly_is_zero(B, ctx)) { nmod_mpoly_make_monic(G, A, ctx); return 1; } if (A->bits > FLINT_BITS || B->bits > FLINT_BITS) { return 0; } if (ctx->minfo->nvars < 2) { return nmod_mpoly_gcd(G, A, B, ctx); } perm = FLINT_ARRAY_ALLOC(ctx->minfo->nvars, slong); shift = FLINT_ARRAY_ALLOC(ctx->minfo->nvars, ulong); stride = FLINT_ARRAY_ALLOC(ctx->minfo->nvars, ulong); for (i = 0; i < ctx->minfo->nvars; i++) { perm[i] = i; shift[i] = 0; stride[i] = 1; } FLINT_ASSERT(A->bits <= FLINT_BITS); FLINT_ASSERT(B->bits <= FLINT_BITS); FLINT_ASSERT(!nmod_mpoly_is_zero(A, ctx)); FLINT_ASSERT(!nmod_mpoly_is_zero(B, ctx)); FLINT_ASSERT(ctx->minfo->nvars >= 2); flint_randinit(state); wbits = FLINT_MAX(A->bits, B->bits); nmod_mpoly_ctx_init(lctx, ctx->minfo->nvars, ORD_LEX, nmod_mpoly_ctx_modulus(ctx)); nmod_mpoly_init3(Al, 0, wbits, lctx); nmod_mpoly_init3(Bl, 0, wbits, lctx); nmod_mpoly_init3(Gl, 0, wbits, lctx); nmod_mpoly_init3(Abarl, 0, wbits, lctx); nmod_mpoly_init3(Bbarl, 0, wbits, lctx); nmod_mpoly_init3(Ac, 0, wbits, lctx); nmod_mpoly_init3(Bc, 0, wbits, lctx); nmod_mpoly_init3(Gc, 0, wbits, lctx); nmod_mpoly_to_mpolyl_perm_deflate(Al, lctx, A, ctx, perm, shift, stride); nmod_mpoly_to_mpolyl_perm_deflate(Bl, lctx, B, ctx, perm, shift, stride); success = nmod_mpolyl_content(Ac, Al, 1, lctx) && nmod_mpolyl_content(Bc, Bl, 1, lctx); if (!success) goto cleanup; if (!nmod_mpoly_divides(Al, Al, Ac, lctx) || !nmod_mpoly_divides(Bl, Bl, Bc, lctx)) { flint_printf("FAIL: Check content divides\n"); flint_abort(); } nmod_mpoly_repack_bits_inplace(Al, wbits, lctx); nmod_mpoly_repack_bits_inplace(Bl, wbits, lctx); success = nmod_mpolyl_gcdp_zippel_smprime(Gl, Abarl, Bbarl, Al, Bl, ctx->minfo->nvars - 1, lctx, state); if (!success) goto cleanup; success = nmod_mpoly_gcd(Gc, Ac, Bc, lctx); if (!success) goto cleanup; nmod_mpoly_mul(Gl, Gl, Gc, lctx); nmod_mpoly_from_mpolyl_perm_inflate(G, FLINT_MIN(A->bits, B->bits), ctx, Gl, lctx, perm, shift, stride); success = 1; nmod_mpoly_make_monic(G, G, ctx); cleanup: nmod_mpoly_clear(Al, lctx); nmod_mpoly_clear(Bl, lctx); nmod_mpoly_clear(Gl, lctx); nmod_mpoly_clear(Abarl, lctx); nmod_mpoly_clear(Bbarl, lctx); nmod_mpoly_clear(Ac, lctx); nmod_mpoly_clear(Bc, lctx); nmod_mpoly_clear(Gc, lctx); nmod_mpoly_ctx_clear(lctx); flint_randclear(state); flint_free(perm); flint_free(shift); flint_free(stride); return success; } void gcd_check( nmod_mpoly_t g, nmod_mpoly_t a, nmod_mpoly_t b, const nmod_mpoly_t gdiv, nmod_mpoly_ctx_t ctx, slong i, slong j, const char * name) { int res; nmod_mpoly_t ca, cb, cg; nmod_mpoly_init(ca, ctx); nmod_mpoly_init(cb, ctx); nmod_mpoly_init(cg, ctx); res = compute_gcd(g, a, b, ctx); nmod_mpoly_assert_canonical(g, ctx); if (!res) { if (FLINT_BIT_COUNT(nmod_mpoly_ctx_modulus(ctx)) < 10) goto cleanup; flint_printf("FAIL: Check gcd can be computed\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } if (!nmod_mpoly_is_zero(gdiv, ctx)) { if (!nmod_mpoly_divides(ca, g, gdiv, ctx)) { flint_printf("FAIL: Check divisor of gcd\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } } if (nmod_mpoly_is_zero(g, ctx)) { if (!nmod_mpoly_is_zero(a, ctx) || !nmod_mpoly_is_zero(b, ctx)) { flint_printf("FAIL: Check zero gcd\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } goto cleanup; } if (g->coeffs[0] != 1) { flint_printf("FAIL: Check gcd is monic\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } res = nmod_mpoly_divides(ca, a, g, ctx) && nmod_mpoly_divides(cb, b, g, ctx); if (!res) { flint_printf("FAIL: Check divisibility\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } res = compute_gcd(cg, ca, cb, ctx); nmod_mpoly_assert_canonical(cg, ctx); if (!res) { if (FLINT_BIT_COUNT(nmod_mpoly_ctx_modulus(ctx)) < 10) goto cleanup; flint_printf("FAIL: Check gcd of cofactors can be computed\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } if (!nmod_mpoly_is_one(cg, ctx)) { flint_printf("FAIL: Check gcd of cofactors is one\n"); flint_printf("i = %wd, j = %wd, %s\n", i, j, name); flint_abort(); } cleanup: nmod_mpoly_clear(ca, ctx); nmod_mpoly_clear(cb, ctx); nmod_mpoly_clear(cg, ctx); } int main(void) { slong i, j, tmul = 20; FLINT_TEST_INIT(state); flint_printf("gcd_zippel...."); fflush(stdout); { nmod_mpoly_ctx_t ctx; nmod_mpoly_t r, a, b, g; nmod_mpoly_ctx_init(ctx, 4, ORD_LEX, 1009); nmod_mpoly_init(r, ctx); nmod_mpoly_init(a, ctx); nmod_mpoly_init(b, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_set_str_pretty(a, "x1+x2+x3+1", NULL, ctx); nmod_mpoly_set_str_pretty(b, "x1+x2+x3+2", NULL, ctx); nmod_mpoly_set_str_pretty(g, "x1^3*(x3+1)*x4 + x1^2*(x3+1)*(x4+1) + x1*(x3+1)*(x3+2)*x2 + (x3^2+x3+2)*x4 + 1", NULL, ctx); nmod_mpoly_mul(a, a, g, ctx); nmod_mpoly_mul(b, b, g, ctx); gcd_check(r, a, b, g, ctx, -2, 0, "example"); nmod_mpoly_clear(r, ctx); nmod_mpoly_clear(a, ctx); nmod_mpoly_clear(b, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_ctx_clear(ctx); } { nmod_mpoly_ctx_t ctx; nmod_mpoly_t g, a, b, t; const char * vars[] = {"t" ,"z", "y", "x"}; nmod_mpoly_ctx_init(ctx, 4, ORD_LEX, 1000003); nmod_mpoly_init(a, ctx); nmod_mpoly_init(b, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_init(t, ctx); nmod_mpoly_set_str_pretty(t, "39 - t*x + 39*x^100 - t*x^101 + 39*x^3*y - t*x^4*y - 7*x^2*y^3*z^11 - 7*x^102*y^3*z^11 - 7*x^5*y^4*z^11 + 78*t^15*x^78*y^3*z^13 - 2*t^16*x^79*y^3*z^13 + x^1000*y^3*z^20 + x^1100*y^3*z^20 + x^1003*y^4*z^20 - 14*t^15*x^80*y^6*z^24 + 2*t^15*x^1078*y^6*z^33", vars, ctx); nmod_mpoly_set_str_pretty(a, "39 - t*x - 7*x^2*y^3*z^11 + x^1000*y^3*z^20", vars, ctx); nmod_mpoly_set_str_pretty(b, "1 + x^100 + x^3*y + 2*t^15*x^78*y^3*z^13", vars, ctx); nmod_mpoly_mul(a, a, t, ctx); nmod_mpoly_mul(b, b, t, ctx); gcd_check(g, a, b, t, ctx, -2, 1, "example"); nmod_mpoly_clear(a, ctx); nmod_mpoly_clear(b, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(t, ctx); nmod_mpoly_ctx_clear(ctx); } { nmod_mpoly_ctx_t ctx; nmod_mpoly_t r, d, f, g; const char* vars[] = {"x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10"}; const char * example[][3] = {{ "x1^2 + x1 + 3", "2*x1^2 + 2*x1 + 1", "x1^2 + 2*x1 + 2" }, { "2*x1^2*x2^2 + x1*x2 + 2*x1", "x2^2 + 2*x1^2*x2 + x1^2 + 1", "x1^2*x2^2 + x1^2*x2 + x1*x2 + x1^2 + x1" }, { "x2^2*x3^2 + x2^2*x3 + 2*x1^2*x2*x3 + x1*x3", "x3^2 + x2^2*x3 + x1^2*x2*x3 + x1*x3 + x1^2*x2^2", "x2*x3 + 2*x1*x3 + x3 + x1" }, { "x1^2*x4^2 + x2^2*x3*x4 + x1^2*x2*x4 + x2*x4 + x1^2*x2*x3", "x1*x2*x3^2*x4^2 + x1*x3^2*x4^2 + x1*x4^2 + x4^2 + x1*x3*x4", "x1*x3^2*x4^2 + x3^2*x4^2 + x4^2 + x1*x2^2*x3*x4 + x1*x2^2" }, { "x1^3*x2^2*x3^2*x4*x5^2 + x1*x2^2*x5^2 + x1^3*x3*x4^2*x5" " + x1^3*x2*x3^2*x4*x5 + x1^2*x2*x3^2*x4^2" , "x1*x2^2*x5^2 + x1*x2*x3^2*x4*x5 + x1*x2*x3^2*x4^2" " + x1*x2^2*x4^2 + 1" , "x1*x3^2*x4*x5^2 + x2*x5^2 + x1*x2*x4*x5 + x2*x5 + x1*x2*x3*x4^2" }, { "x1*x2*x4^2*x5^2*x6^2 + x1*x2^2*x3^2*x4*x5^2*x6^2 + x1^2*x3*x6^2" " + x1^2*x2*x3^2*x4*x5^2*x6 + x1^2*x3*x5*x6" , "x1^2*x2*x4*x5^2*x6^2 + x1*x3*x5^2*x6^2 + x1*x2^2*x6^2" " + x1^2*x2^2*x3^2*x5*x6 + x1*x3^2*x4*x5" , "x2^2*x3^2*x4*x5^2*x6 + x1*x4^2*x5*x6 + x2^2*x3^2*x4*x5*x6" " + x1*x2^2*x3*x4^2*x6 + x1^2*x3*x5^2" }, { "x1*x2^2*x4^2*x6^2*x7^2 + x1^2*x3*x4*x6^2*x7^2 + x3^2*x4^2*x7^2" " + x1^2*x2*x4^2*x6 + x3*x4*x5^2" , "x1^2*x2*x4^2*x5*x6^2*x7^2 + x1*x2*x3*x6*x7 + x3*x4^2*x5^2*x7" " + x1*x4^2*x5^2*x7 + x1^2*x2*x3*x4^2+x5*x6" , "x1*x3*x5*x6^2*x7^2 + x2^2*x3^2*x4^2*x5*x6*x7^2 + x4*x6*x7^2" " + x1^2*x2*x3*x5*x6*x7 + x1^2*x3^2*x4*x5^2" }, { "x2^2*x4*x5*x6*x7*x8^2 + x1^2*x2*x3^2*x4^2*x6^2*x7^2*x8" " + x1^2*x3*x4^2*x6^2*x7^2 + x1^2*x2^2*x3^2*x4*x5^2*x6*x7^2" " + x2^2*x4*x6" , "x1^2*x2^2*x3*x4^2*x5*x6^2*x8^2 + x2*x5*x6^2*x8^2" " + x1^2*x2^2*x3^2*x4^2*x6^2*x7^2*x8 + x1^2*x3^2*x4*x5^2*x7^2*x8" " + x1*x2^2*x3^2*x5^2*x7" , "x1*x4^2*x5*x6*x7*x8^2 + x1*x2^2*x4^2*x5^2*x6^2*x8" " + x1^2*x2*x3*x4^2*x6^2*x8 + x1^2*x2^2*x3^2*x4*x5^2*x8" " + x1*x2*x4^2*x5^2" }, { "x1^2*x3^3*x4*x6*x8*x9^2 + x1*x2*x3*x4^2*x5^2*x8*x9" " + x2*x3*x4*x5^2*x8*x9 + x1*x3^3*x4^2*x5^2*x6^2*x7*x8^2" " + x2*x3*x4*x5^2*x6*x7*x8^2" , "x1^2*x2^2*x3*x7^2*x8*x9 + x2^2*x9 + x1^2*x3*x4^2*x5^2*x6*x7^2" " + x4^2*x5^2*x7^2 + x3*x4^2*x6*x7" , "x1^2*x2*x4*x5*x6*x7^2*x8^2*x9^2 + x1^2*x2*x3*x5*x6^2*x7^2*x8*x9^2" " + x1^2*x3*x4*x6*x7^2*x8*x9 + x1^2*x2^2*x6*x8^2" " + x2^2*x4*x5*x6^2*x7" }, { "x1*x2^2*x4^2*x8*x9^2*x10^2 + x2^2*x4*x5^2*x6*x7*x9*x10^2" " + x1^2*x2*x3*x5^2*x7^2*x9^2 + x1*x3^2*x4^2*x7^2*x9^2" " + x1^2*x3*x4*x7^2*x8^2" , "x1*x2*x3^2*x4*x6*x7*x8*x9^2*x10^2 + x2^2*x3^2*x4^2*x6^2*x9*x10^2" " + x1*x2^2*x3^2*x4*x5*x6*x7*x8^2*x9^2*x10" " + x1^2*x2*x4^2*x5^2*x8^2*x9^2*x10 + x3*x4^2*x5*x6*x7^2*x9*x10" , "x1*x2^2*x3^2*x5^2*x6^2*x7*x8*x9^2*x10^2 + x3*x8*x9^2*x10^2" " + x1*x2^2*x3*x4*x5^2*x6^2*x8^2*x9*x10 + x1*x3*x6*x7*x8*x10" " + x4^2*x5^2*x6^2*x7*x9^2" }}; for (i = 1; i <= 10; i++) { nmod_mpoly_ctx_init(ctx, i, ORD_DEGREVLEX, 1009); nmod_mpoly_init(r, ctx); nmod_mpoly_init(d, ctx); nmod_mpoly_init(f, ctx); nmod_mpoly_init(g, ctx); nmod_mpoly_set_str_pretty(d, example[i - 1][0], vars, ctx); nmod_mpoly_set_str_pretty(f, example[i - 1][1], vars, ctx); nmod_mpoly_set_str_pretty(g, example[i - 1][2], vars, ctx); nmod_mpoly_mul(f, f, d, ctx); nmod_mpoly_mul(g, g, d, ctx); nmod_mpoly_randtest_bits(r, state, 10, FLINT_BITS, ctx); gcd_check(r, f, g, d, ctx, -1, i, "example"); nmod_mpoly_clear(r, ctx); nmod_mpoly_clear(d, ctx); nmod_mpoly_clear(f, ctx); nmod_mpoly_clear(g, ctx); nmod_mpoly_ctx_clear(ctx); } } for (i = 0; i < tmul * flint_test_multiplier(); i++) { nmod_mpoly_ctx_t ctx; nmod_mpoly_t a, b, g, t; slong len, len1, len2; slong degbound; mp_limb_t p; p = n_randint(state, (i % 2 == 0) ? 10 : FLINT_BITS - 1) + 1; p = n_randbits(state, p); p = n_nextprime(p, 1); nmod_mpoly_ctx_init_rand(ctx, state, 10, p); nmod_mpoly_init(g, ctx); nmod_mpoly_init(a, ctx); nmod_mpoly_init(b, ctx); nmod_mpoly_init(t, ctx); len = n_randint(state, 30) + 1; len1 = n_randint(state, 30) + 1; len2 = n_randint(state, 30) + 1; degbound = 2 + 150/(2*ctx->minfo->nvars - 1); for (j = 0; j < 4; j++) { nmod_mpoly_randtest_bound(a, state, len1, degbound, ctx); nmod_mpoly_randtest_bound(b, state, len2, degbound, ctx); nmod_mpoly_randtest_bound(t, state, len, degbound, ctx); if (nmod_mpoly_is_zero(t, ctx)) nmod_mpoly_one(t, ctx); nmod_mpoly_mul(a, a, t, ctx); nmod_mpoly_mul(b, b, t, ctx); nmod_mpoly_randtest_bits(g, state, len, FLINT_BITS, ctx); gcd_check(g, a, b, t, ctx, i, j, "sparse"); } nmod_mpoly_clear(g, ctx); nmod_mpoly_clear(a, ctx); nmod_mpoly_clear(b, ctx); nmod_mpoly_clear(t, ctx); nmod_mpoly_ctx_clear(ctx); } flint_printf("PASS\n"); FLINT_TEST_CLEANUP(state); return 0; }