/*
Copyright (C) 2019 Daniel Schultz
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "nmod_poly.h"
#include "mpn_extras.h"
/*
typedef struct {
slong npoints;
nmod_poly_t R0, R1;
nmod_poly_t V0, V1;
nmod_poly_t qt, rt; temporaries
nmod_poly_t points;
} nmod_berlekamp_massey_struct;
typedef nmod_berlekamp_massey_struct nmod_berlekamp_massey_t[1];
n = B->npoints is the number of points a_1, ..., a_n that have been added
to the sequence. The polynomials A and S are then defined as
A = x^n
S = a_1*x^(n-1) + a_2*x^(n-2) + ... + a_n
We maintain polynomials U0, V0, U1, V1 such that
U0*A + V0*S = R0 deg(R0) >= n/2
U1*A + V1*S = R1 deg(R1) < n/2
where R0 and R1 are consecutive euclidean remainders and U0, V0, U1, V1 are
the corresponding Bezout coefficients. Note that
deg(U1) < deg(V1) = deg(A) - deg(R0) <= n/2
The U0 and U1 are not stored explicitly. The points a_1, ..., a_n are stored
in B->points, which is used merely as a resizable array.
The main usage of this function is the rational reconstruction of a series
a1 a2 a3 -U1
--- + --- + --- + ... = ---- maybe
x x^2 x^3 V1
It can be seen that
a1 a2 an -U1 R1
--- + --- + ... --- = --- + -------
x x^2 x^n V1 V1*x^n
Thus the error is O(1/x^(n+1)) iff deg(R1) < deg(V1).
*/
void nmod_berlekamp_massey_init(
nmod_berlekamp_massey_t B,
mp_limb_t p)
{
nmod_t fpctx;
nmod_init(&fpctx, p);
nmod_poly_init_mod(B->V0, fpctx);
nmod_poly_init_mod(B->R0, fpctx);
nmod_poly_one(B->R0);
nmod_poly_init_mod(B->V1, fpctx);
nmod_poly_one(B->V1);
nmod_poly_init_mod(B->R1, fpctx);
nmod_poly_init_mod(B->rt, fpctx);
nmod_poly_init_mod(B->qt, fpctx);
nmod_poly_init_mod(B->points, fpctx);
B->npoints = 0;
B->points->length = 0;
}
void nmod_berlekamp_massey_start_over(
nmod_berlekamp_massey_t B)
{
B->npoints = 0;
B->points->length = 0;
nmod_poly_zero(B->V0);
nmod_poly_one(B->R0);
nmod_poly_one(B->V1);
nmod_poly_zero(B->R1);
}
void nmod_berlekamp_massey_clear(
nmod_berlekamp_massey_t B)
{
nmod_poly_clear(B->R0);
nmod_poly_clear(B->R1);
nmod_poly_clear(B->V0);
nmod_poly_clear(B->V1);
nmod_poly_clear(B->rt);
nmod_poly_clear(B->qt);
nmod_poly_clear(B->points);
}
/* setting the prime also starts over */
void nmod_berlekamp_massey_set_prime(
nmod_berlekamp_massey_t B,
mp_limb_t p)
{
nmod_t fpctx;
nmod_init(&fpctx, p);
nmod_poly_set_mod(B->V0, fpctx);
nmod_poly_set_mod(B->R0, fpctx);
nmod_poly_set_mod(B->V1, fpctx);
nmod_poly_set_mod(B->R1, fpctx);
nmod_poly_set_mod(B->rt, fpctx);
nmod_poly_set_mod(B->qt, fpctx);
nmod_poly_set_mod(B->points, fpctx);
nmod_berlekamp_massey_start_over(B);
}
void nmod_berlekamp_massey_print(
const nmod_berlekamp_massey_t B)
{
slong i;
nmod_poly_print_pretty(B->V1, "#");
flint_printf(",");
for (i = 0; i < B->points->length; i++)
{
flint_printf(" %wu", B->points->coeffs[i]);
}
}
void nmod_berlekamp_massey_add_points(
nmod_berlekamp_massey_t B,
const mp_limb_t * a,
slong count)
{
slong i;
slong old_length = B->points->length;
nmod_poly_fit_length(B->points, old_length + count);
for (i = 0; i < count; i++)
{
B->points->coeffs[old_length + i] = a[i];
}
B->points->length = old_length + count;
}
void nmod_berlekamp_massey_add_zeros(
nmod_berlekamp_massey_t B,
slong count)
{
slong i;
slong old_length = B->points->length;
nmod_poly_fit_length(B->points, old_length + count);
for (i = 0; i < count; i++)
{
B->points->coeffs[old_length + i] = 0;
}
B->points->length = old_length + count;
}
void nmod_berlekamp_massey_add_point(
nmod_berlekamp_massey_t B,
mp_limb_t a)
{
slong old_length = B->points->length;
nmod_poly_fit_length(B->points, old_length + 1);
B->points->coeffs[old_length] = a;
B->points->length = old_length + 1;
}
/* return 1 if reduction changed the master poly, 0 otherwise */
int nmod_berlekamp_massey_reduce(
nmod_berlekamp_massey_t B)
{
slong i, l, k, queue_len, queue_lo, queue_hi;
/*
the points in B->points->coeffs[j] for queue_lo <= j < queue_hi need
to be added to the internal polynomials.
These are first reversed into rt. deg(rt) < queue_len.
*/
queue_lo = B->npoints;
queue_hi = B->points->length;
queue_len = queue_hi - queue_lo;
FLINT_ASSERT(queue_len >= 0);
nmod_poly_zero(B->rt);
for (i = 0; i < queue_len; i++)
{
nmod_poly_set_coeff_ui(B->rt, queue_len - i - 1,
B->points->coeffs[queue_lo + i]);
}
B->npoints = queue_hi;
/* Ri = Ri * x^queue_len + Vi*rt */
nmod_poly_mul(B->qt, B->V0, B->rt);
nmod_poly_shift_left(B->R0, B->R0, queue_len);
nmod_poly_add(B->R0, B->R0, B->qt);
nmod_poly_mul(B->qt, B->V1, B->rt);
nmod_poly_shift_left(B->R1, B->R1, queue_len);
nmod_poly_add(B->R1, B->R1, B->qt);
/* now start reducing R0, R1 */
if (2*nmod_poly_degree(B->R1) < B->npoints)
{
/* already have deg(R1) < B->npoints/2 */
return 0;
}
/* one iteration of euclid to get deg(R0) >= B->npoints/2 */
nmod_poly_divrem(B->qt, B->rt, B->R0, B->R1);
nmod_poly_swap(B->R0, B->R1);
nmod_poly_swap(B->R1, B->rt);
nmod_poly_mul(B->rt, B->qt, B->V1);
nmod_poly_sub(B->qt, B->V0, B->rt);
nmod_poly_swap(B->V0, B->V1);
nmod_poly_swap(B->V1, B->qt);
l = nmod_poly_degree(B->R0);
FLINT_ASSERT(B->npoints <= 2*l && l < B->npoints);
k = B->npoints - l;
FLINT_ASSERT(0 <= k && k <= l);
/*
(l - k)/2 is the expected number of required euclidean iterations.
Either branch is OK anytime. TODO: find cutoff
*/
if (l - k < 10)
{
while (B->npoints <= 2*nmod_poly_degree(B->R1))
{
nmod_poly_divrem(B->qt, B->rt, B->R0, B->R1);
nmod_poly_swap(B->R0, B->R1);
nmod_poly_swap(B->R1, B->rt);
nmod_poly_mul(B->rt, B->qt, B->V1);
nmod_poly_sub(B->qt, B->V0, B->rt);
nmod_poly_swap(B->V0, B->V1);
nmod_poly_swap(B->V1, B->qt);
}
}
else
{
slong sgnM;
nmod_poly_t m11, m12, m21, m22, r0, r1, t0, t1;
nmod_poly_init_mod(m11, B->V1->mod);
nmod_poly_init_mod(m12, B->V1->mod);
nmod_poly_init_mod(m21, B->V1->mod);
nmod_poly_init_mod(m22, B->V1->mod);
nmod_poly_init_mod(r0, B->V1->mod);
nmod_poly_init_mod(r1, B->V1->mod);
nmod_poly_init_mod(t0, B->V1->mod);
nmod_poly_init_mod(t1, B->V1->mod);
nmod_poly_shift_right(r0, B->R0, k);
nmod_poly_shift_right(r1, B->R1, k);
sgnM = nmod_poly_hgcd(m11, m12, m21, m22, t0, t1, r0, r1);
/* multiply [[V0 R0] [V1 R1]] by M^(-1) on the left */
nmod_poly_mul(B->rt, m22, B->V0);
nmod_poly_mul(B->qt, m12, B->V1);
sgnM > 0 ? nmod_poly_sub(r0, B->rt, B->qt)
: nmod_poly_sub(r0, B->qt, B->rt);
nmod_poly_mul(B->rt, m11, B->V1);
nmod_poly_mul(B->qt, m21, B->V0);
sgnM > 0 ? nmod_poly_sub(r1, B->rt, B->qt)
: nmod_poly_sub(r1, B->qt, B->rt);
nmod_poly_swap(B->V0, r0);
nmod_poly_swap(B->V1, r1);
nmod_poly_mul(B->rt, m22, B->R0);
nmod_poly_mul(B->qt, m12, B->R1);
sgnM > 0 ? nmod_poly_sub(r0, B->rt, B->qt)
: nmod_poly_sub(r0, B->qt, B->rt);
nmod_poly_mul(B->rt, m11, B->R1);
nmod_poly_mul(B->qt, m21, B->R0);
sgnM > 0 ? nmod_poly_sub(r1, B->rt, B->qt)
: nmod_poly_sub(r1, B->qt, B->rt);
nmod_poly_swap(B->R0, r0);
nmod_poly_swap(B->R1, r1);
nmod_poly_clear(m11);
nmod_poly_clear(m12);
nmod_poly_clear(m21);
nmod_poly_clear(m22);
nmod_poly_clear(r0);
nmod_poly_clear(r1);
nmod_poly_clear(t0);
nmod_poly_clear(t1);
}
FLINT_ASSERT(nmod_poly_degree(B->V1) >= 0);
FLINT_ASSERT(2*nmod_poly_degree(B->V1) <= B->npoints);
FLINT_ASSERT(2*nmod_poly_degree(B->R0) >= B->npoints);
FLINT_ASSERT(2*nmod_poly_degree(B->R1) < B->npoints);
return 1;
}