/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "nmod_mat.h" #include "ulong_extras.h" void _nmod_poly_compose_mod_brent_kung(mp_ptr res, mp_srcptr poly1, slong len1, mp_srcptr poly2, mp_srcptr poly3, slong len3, nmod_t mod) { nmod_mat_t A, B, C; mp_ptr t, h; slong i, n, m; n = len3 - 1; if (len3 == 1) return; if (len1 == 1) { res[0] = poly1[0]; return; } if (len3 == 2) { res[0] = _nmod_poly_evaluate_nmod(poly1, len1, poly2[0], mod); return; } m = n_sqrt(n) + 1; nmod_mat_init(A, m, n, mod.n); nmod_mat_init(B, m, m, mod.n); nmod_mat_init(C, m, n, mod.n); h = _nmod_vec_init(n); t = _nmod_vec_init(n); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _nmod_vec_set(B->rows[i], poly1 + i*m, m); _nmod_vec_set(B->rows[i], poly1 + i*m, len1 % m); /* Set rows of A to powers of poly2 */ A->rows[0][0] = UWORD(1); _nmod_vec_set(A->rows[1], poly2, n); for (i = 2; i < m; i++) _nmod_poly_mulmod(A->rows[i], A->rows[i-1], n, poly2, n, poly3, len3, mod); nmod_mat_mul(C, B, A); /* Evaluate block composition using the Horner scheme */ _nmod_vec_set(res, C->rows[m - 1], n); _nmod_poly_mulmod(h, A->rows[m - 1], n, poly2, n, poly3, len3, mod); for (i = m - 2; i >= 0; i--) { _nmod_poly_mulmod(t, res, n, h, n, poly3, len3, mod); _nmod_poly_add(res, t, n, C->rows[i], n, mod); } _nmod_vec_clear(h); _nmod_vec_clear(t); nmod_mat_clear(A); nmod_mat_clear(B); nmod_mat_clear(C); } void nmod_poly_compose_mod_brent_kung(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t poly3) { slong len1 = poly1->length; slong len2 = poly2->length; slong len3 = poly3->length; slong len = len3 - 1; mp_ptr ptr2; if (len3 == 0) { flint_printf("Exception (nmod_poly_compose_mod_brent_kung). Division by zero.\n"); flint_abort(); } if (len1 >= len3) { flint_printf("Exception (nmod_poly_compose_brent_kung). The degree of the \n" "first polynomial must be smaller than that of the modulus.\n"); flint_abort(); } if (len1 == 0 || len3 == 1) { nmod_poly_zero(res); return; } if (len1 == 1) { nmod_poly_set(res, poly1); return; } if (res == poly3 || res == poly1) { nmod_poly_t tmp; nmod_poly_init_preinv(tmp, res->mod.n, res->mod.ninv); nmod_poly_compose_mod_brent_kung(tmp, poly1, poly2, poly3); nmod_poly_swap(tmp, res); nmod_poly_clear(tmp); return; } ptr2 = _nmod_vec_init(len); if (len2 <= len) { flint_mpn_copyi(ptr2, poly2->coeffs, len2); flint_mpn_zero(ptr2 + len2, len - len2); } else { _nmod_poly_rem(ptr2, poly2->coeffs, len2, poly3->coeffs, len3, res->mod); } nmod_poly_fit_length(res, len); _nmod_poly_compose_mod_brent_kung(res->coeffs, poly1->coeffs, len1, ptr2, poly3->coeffs, len3, res->mod); res->length = len; _nmod_poly_normalise(res); _nmod_vec_clear(ptr2); }