/* Copyright (C) 2011 Fredrik Johansson Copyright (C) 2014 Martin Lee Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "nmod_mat.h" #include "ulong_extras.h" void _nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res, const nmod_poly_struct * polys, slong lenpolys, slong l, mp_srcptr g, slong glen, mp_srcptr poly, slong len, mp_srcptr polyinv, slong leninv, nmod_t mod) { nmod_mat_t A, B, C; mp_ptr t, h; slong i, j, k, n, m, len2 = l, len1; n = len - 1; m = n_sqrt(n*len2) + 1; h = _nmod_vec_init(n); t = _nmod_vec_init(n); k = len/m + 1; nmod_mat_init(A, m, n, mod.n); nmod_mat_init(B, k*len2, m, mod.n); nmod_mat_init(C, k*len2, n, mod.n); /* Set rows of B to the segments of polys */ for (j = 0; j < len2; j++) { len1 = (polys + j)->length; for (i = 0; i < len1/m; i++) _nmod_vec_set(B->rows[i + j*k], (polys + j)->coeffs + i*m, m); _nmod_vec_set(B->rows[i + j*k], (polys + j)->coeffs + i*m, len1%m); } /* Set rows of A to powers of last element of polys */ _nmod_poly_powers_mod_preinv_naive(A->rows, g, glen, m, poly, len, polyinv, leninv, mod); nmod_mat_mul(C, B, A); /* Evaluate block composition using the Horner scheme */ if (n == 1) { h[0] = n_mulmod2_preinv(A->rows[m - 1][0], A->rows[1][0], mod.n, mod.ninv); } else { _nmod_poly_mulmod_preinv(h, A->rows[m - 1], n, A->rows[1], n, poly, len, polyinv, leninv, mod); } for (j = 0; j < len2; j++) { _nmod_vec_set((res + j)->coeffs, C->rows[(j + 1)*k - 1], n); if (n == 1) { for (i = 2; i <= k; i++) { t[0] = n_mulmod2_preinv(res[j].coeffs[0], h[0], mod.n, mod.ninv); res[j].coeffs[0] = n_addmod(t[0], C->rows[(j + 1)*k - i][0], mod.n); } } else { for (i = 2; i <= k; i++) { _nmod_poly_mulmod_preinv(t, res[j].coeffs, n, h, n, poly, len, polyinv, leninv, mod); _nmod_poly_add(res[j].coeffs, t, n, C->rows[(j + 1)*k - i], n, mod); } } } _nmod_vec_clear(h); _nmod_vec_clear(t); nmod_mat_clear(A); nmod_mat_clear(B); nmod_mat_clear(C); } void nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res, const nmod_poly_struct * polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv) { slong len2 = poly->length; slong len3, i; for (i = 0; i < len1; i++) { len3 = (polys + i)->length; if (len3 >= len2) { flint_printf("Exception (nmod_poly_compose_mod_brent_kung_vec_preinv)." "The degree of the first polynomial must be smaller than that of the " " modulus\n"); flint_abort(); } } if (n > len1) { flint_printf("Exception (nmod_poly_compose_mod_brent_kung_vec_preinv)." "n is larger than the length of polys\n"); flint_abort(); } if (n == 0) return; if (len2 == 1) { for (i = 0; i < n; i++) nmod_poly_zero(res + i); return; } if (len2 == 2) { for (i = 0; i < n; i++) nmod_poly_set(res + i, polys + i); return; } for (i = 0; i < n; i++) { nmod_poly_fit_length(res + i, len2 - 1); _nmod_poly_set_length(res + i, len2 - 1); } _nmod_poly_compose_mod_brent_kung_vec_preinv(res, polys, len1, n, g->coeffs, g->length, poly->coeffs, len2, polyinv->coeffs, polyinv->length, poly->mod); for (i = 0; i < n; i++) _nmod_poly_normalise(res + i); }