/*
Copyright (C) 2011 Fredrik Johansson
Copyright (C) 2014 Martin Lee
Copyright (C) 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "nmod_vec.h"
#include "nmod_poly.h"
#include "nmod_mat.h"
#include "ulong_extras.h"
void
_nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res,
const nmod_poly_struct * polys, slong lenpolys, slong l,
mp_srcptr g, slong glen, mp_srcptr poly, slong len,
mp_srcptr polyinv, slong leninv, nmod_t mod)
{
nmod_mat_t A, B, C;
mp_ptr t, h;
slong i, j, k, n, m, len2 = l, len1;
n = len - 1;
m = n_sqrt(n*len2) + 1;
h = _nmod_vec_init(n);
t = _nmod_vec_init(n);
k = len/m + 1;
nmod_mat_init(A, m, n, mod.n);
nmod_mat_init(B, k*len2, m, mod.n);
nmod_mat_init(C, k*len2, n, mod.n);
/* Set rows of B to the segments of polys */
for (j = 0; j < len2; j++)
{
len1 = (polys + j)->length;
for (i = 0; i < len1/m; i++)
_nmod_vec_set(B->rows[i + j*k], (polys + j)->coeffs + i*m, m);
_nmod_vec_set(B->rows[i + j*k], (polys + j)->coeffs + i*m, len1%m);
}
/* Set rows of A to powers of last element of polys */
_nmod_poly_powers_mod_preinv_naive(A->rows, g, glen,
m, poly, len, polyinv, leninv, mod);
nmod_mat_mul(C, B, A);
/* Evaluate block composition using the Horner scheme */
if (n == 1)
{
h[0] = n_mulmod2_preinv(A->rows[m - 1][0],
A->rows[1][0], mod.n, mod.ninv);
} else
{
_nmod_poly_mulmod_preinv(h, A->rows[m - 1], n, A->rows[1], n, poly,
len, polyinv, leninv, mod);
}
for (j = 0; j < len2; j++)
{
_nmod_vec_set((res + j)->coeffs, C->rows[(j + 1)*k - 1], n);
if (n == 1)
{
for (i = 2; i <= k; i++)
{
t[0] = n_mulmod2_preinv(res[j].coeffs[0],
h[0], mod.n, mod.ninv);
res[j].coeffs[0] = n_addmod(t[0],
C->rows[(j + 1)*k - i][0], mod.n);
}
} else
{
for (i = 2; i <= k; i++)
{
_nmod_poly_mulmod_preinv(t, res[j].coeffs,
n, h, n, poly, len, polyinv, leninv, mod);
_nmod_poly_add(res[j].coeffs, t, n,
C->rows[(j + 1)*k - i], n, mod);
}
}
}
_nmod_vec_clear(h);
_nmod_vec_clear(t);
nmod_mat_clear(A);
nmod_mat_clear(B);
nmod_mat_clear(C);
}
void
nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct * res,
const nmod_poly_struct * polys, slong len1, slong n,
const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv)
{
slong len2 = poly->length;
slong len3, i;
for (i = 0; i < len1; i++)
{
len3 = (polys + i)->length;
if (len3 >= len2)
{
flint_printf("Exception (nmod_poly_compose_mod_brent_kung_vec_preinv)."
"The degree of the first polynomial must be smaller than that of the "
" modulus\n");
flint_abort();
}
}
if (n > len1)
{
flint_printf("Exception (nmod_poly_compose_mod_brent_kung_vec_preinv)."
"n is larger than the length of polys\n");
flint_abort();
}
if (n == 0)
return;
if (len2 == 1)
{
for (i = 0; i < n; i++)
nmod_poly_zero(res + i);
return;
}
if (len2 == 2)
{
for (i = 0; i < n; i++)
nmod_poly_set(res + i, polys + i);
return;
}
for (i = 0; i < n; i++)
{
nmod_poly_fit_length(res + i, len2 - 1);
_nmod_poly_set_length(res + i, len2 - 1);
}
_nmod_poly_compose_mod_brent_kung_vec_preinv(res, polys, len1, n,
g->coeffs, g->length, poly->coeffs, len2, polyinv->coeffs,
polyinv->length, poly->mod);
for (i = 0; i < n; i++)
_nmod_poly_normalise(res + i);
}