/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "nmod_mat.h" #include "ulong_extras.h" void _nmod_poly_compose_series_brent_kung(mp_ptr res, mp_srcptr poly1, slong len1, mp_srcptr poly2, slong len2, slong n, nmod_t mod) { nmod_mat_t A, B, C; mp_ptr t, h; slong i, m; if (n == 1) { res[0] = poly1[0]; return; } m = n_sqrt(n) + 1; nmod_mat_init(A, m, n, mod.n); nmod_mat_init(B, m, m, mod.n); nmod_mat_init(C, m, n, mod.n); h = _nmod_vec_init(n); t = _nmod_vec_init(n); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _nmod_vec_set(B->rows[i], poly1 + i*m, m); _nmod_vec_set(B->rows[i], poly1 + i*m, len1 % m); /* Set rows of A to powers of poly2 */ A->rows[0][0] = UWORD(1); _nmod_vec_set(A->rows[1], poly2, len2); for (i = 2; i < m; i++) _nmod_poly_mullow(A->rows[i], A->rows[i-1], n, poly2, len2, n, mod); nmod_mat_mul(C, B, A); /* Evaluate block composition using the Horner scheme */ _nmod_vec_set(res, C->rows[m - 1], n); _nmod_poly_mullow(h, A->rows[m - 1], n, poly2, len2, n, mod); for (i = m - 2; i >= 0; i--) { _nmod_poly_mullow(t, res, n, h, n, n, mod); _nmod_poly_add(res, t, n, C->rows[i], n, mod); } _nmod_vec_clear(h); _nmod_vec_clear(t); nmod_mat_clear(A); nmod_mat_clear(B); nmod_mat_clear(C); } void nmod_poly_compose_series_brent_kung(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n) { slong len1 = poly1->length; slong len2 = poly2->length; slong lenr; if (len2 != 0 && poly2->coeffs[0] != 0) { flint_printf("Exception (nmod_poly_compose_series_brent_kung). Inner \n" "polynomial must have zero constant term.\n"); flint_abort(); } if (len1 == 0 || n == 0) { nmod_poly_zero(res); return; } if (len2 == 0 || len1 == 1) { nmod_poly_fit_length(res, 1); res->coeffs[0] = poly1->coeffs[0]; res->length = 1; _nmod_poly_normalise(res); return; } lenr = FLINT_MIN((len1 - 1) * (len2 - 1) + 1, n); len1 = FLINT_MIN(len1, lenr); len2 = FLINT_MIN(len2, lenr); if ((res != poly1) && (res != poly2)) { nmod_poly_fit_length(res, lenr); _nmod_poly_compose_series_brent_kung(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr, res->mod); res->length = lenr; _nmod_poly_normalise(res); } else { nmod_poly_t t; nmod_poly_init2_preinv(t, res->mod.n, res->mod.ninv, lenr); _nmod_poly_compose_series_brent_kung(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr, res->mod); t->length = lenr; _nmod_poly_normalise(t); nmod_poly_swap(res, t); nmod_poly_clear(t); } }