/* Copyright (C) 2007, 2008 David Harvey (zn_poly) Copyright (C) 2013 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" /* Multiplication/squaring using Kronecker substitution at 2^b, -2^b, 2^(-b) and -2^(-b). */ void _nmod_poly_mul_KS4(mp_ptr res, mp_srcptr op1, slong n1, mp_srcptr op2, slong n2, nmod_t mod) { int sqr, v3m_neg; ulong bits, b, w, a1, a2, a3; slong n1o, n1e, n2o, n2e, n3o, n3e, n3, k1, k2, k3; mp_ptr v1_buf0, v2_buf0, v1_buf1, v2_buf1, v1_buf2, v2_buf2, v1_buf3, v2_buf3, v1_buf4, v2_buf4; mp_ptr v1on, v1en, v1pn, v1mn, v2on, v2en, v2pn, v2mn, v3on, v3en, v3pn, v3mn; mp_ptr v1or, v1er, v1pr, v1mr, v2or, v2er, v2pr, v2mr, v3or, v3er, v3pr, v3mr; mp_ptr z, zn, zr; TMP_INIT; if (n2 == 1) { /* code below needs n2 > 1, so fall back on scalar multiplication */ _nmod_vec_scalar_mul_nmod(res, op1, n1, op2[0], mod); return; } TMP_START; sqr = (op1 == op2 && n1 == n2); /* bits in each output coefficient */ bits = 2 * (FLINT_BITS - mod.norm) + FLINT_CLOG2(n2); /* we're evaluating at x = B, -B, 1/B, -1/B, where B = 2^b, and b = ceil(bits / 4) */ b = (bits + 3) / 4; /* number of ulongs required to store each base-B^2 digit */ w = (2*b - 1)/FLINT_BITS + 1; /* Write f1(x) = f1e(x^2) + x * f1o(x^2) f2(x) = f2e(x^2) + x * f2o(x^2) h(x) = he(x^2) + x * ho(x^2) "e" = even, "o" = odd */ n1o = n1 / 2; n1e = n1 - n1o; n2o = n2 / 2; n2e = n2 - n2o; n3 = n1 + n2 - 1; /* length of h */ n3o = n3 / 2; n3e = n3 - n3o; /* Put k1 = number of limbs needed to store f1(B) and |f1(-B)|. In f1(B), the leading coefficient starts at bit position b * (n1 - 1) and has length 2b, and the coefficients overlap so we need an extra bit for the carry: this gives (n1 + 1) * b + 1 bits. Ditto for f2. */ k1 = ((n1 + 1) * b)/FLINT_BITS + 1; k2 = ((n2 + 1) * b)/FLINT_BITS + 1; k3 = k1 + k2; /* allocate space */ v1_buf0 = TMP_ALLOC(sizeof(mp_limb_t) * 5 * k3); /* k1 limbs */ v2_buf0 = v1_buf0 + k1; /* k2 limbs */ v1_buf1 = v2_buf0 + k2; /* k1 limbs */ v2_buf1 = v1_buf1 + k1; /* k2 limbs */ v1_buf2 = v2_buf1 + k2; /* k1 limbs */ v2_buf2 = v1_buf2 + k1; /* k2 limbs */ v1_buf3 = v2_buf2 + k2; /* k1 limbs */ v2_buf3 = v1_buf3 + k1; /* k2 limbs */ v1_buf4 = v2_buf3 + k2; /* k1 limbs */ v2_buf4 = v1_buf4 + k1; /* k2 limbs */ /* arrange overlapping buffers to minimise memory use "p" = plus, "m" = minus "n" = normal order, "r" = reciprocal order */ v1en = v1_buf0; v1on = v1_buf1; v1pn = v1_buf2; v1mn = v1_buf0; v2en = v2_buf0; v2on = v2_buf1; v2pn = v2_buf2; v2mn = v2_buf0; v3pn = v1_buf1; v3mn = v1_buf2; v3en = v1_buf0; v3on = v1_buf1; v1er = v1_buf2; v1or = v1_buf3; v1pr = v1_buf4; v1mr = v1_buf2; v2er = v2_buf2; v2or = v2_buf3; v2pr = v2_buf4; v2mr = v2_buf2; v3pr = v1_buf3; v3mr = v1_buf4; v3er = v1_buf2; v3or = v1_buf3; z = TMP_ALLOC(sizeof(mp_limb_t) * 2*w*(n3e + 1)); zn = z; zr = z + w*(n3e + 1); /* ------------------------------------------------------------------------- "normal" evaluation points */ if (!sqr) { /* multiplication version */ /* evaluate f1e(B^2) and B * f1o(B^2) We need max(2 * b*n1e, 2 * b*n1o + b) bits for this packing step, which is safe since (n1 + 1) * b + 1 >= max(2 * b*n1e, 2 * b*n1o + b). Ditto for f2 below. */ _nmod_poly_KS2_pack(v1en, op1, n1e, 2, 2 * b, 0, k1); _nmod_poly_KS2_pack(v1on, op1 + 1, n1o, 2, 2 * b, b, k1); /* compute f1(B) = f1e(B^2) + B * f1o(B^2) and |f1(-B)| = |f1e(B^2) - B * f1o(B^2)| */ mpn_add_n (v1pn, v1en, v1on, k1); v3m_neg = signed_mpn_sub_n(v1mn, v1en, v1on, k1); /* evaluate f2e(B^2) and B * f2o(B^2) */ _nmod_poly_KS2_pack(v2en, op2, n2e, 2, 2 * b, 0, k2); _nmod_poly_KS2_pack(v2on, op2 + 1, n2o, 2, 2 * b, b, k2); /* compute f2(B) = f2e(B^2) + B * f2o(B^2) and |f2(-B)| = |f2e(B^2) - B * f2o(B^2)| */ mpn_add_n(v2pn, v2en, v2on, k2); v3m_neg ^= signed_mpn_sub_n(v2mn, v2en, v2on, k2); /* compute h(B) = f1(B) * f2(B) and |h(-B)| = |f1(-B)| * |f2(-B)| hn_neg is set if h(-B) is negative */ mpn_mul(v3pn, v1pn, k1, v2pn, k2); mpn_mul(v3mn, v1mn, k1, v2mn, k2); } else { /* squaring version */ /* evaluate f1e(B^2) and B * f1o(B^2) */ _nmod_poly_KS2_pack(v1en, op1, n1e, 2, 2 * b, 0, k1); _nmod_poly_KS2_pack(v1on, op1 + 1, n1o, 2, 2 * b, b, k1); /* compute f1(B) = f1e(B^2) + B * f1o(B^2) and |f1(-B)| = |f1e(B^2) - B * f1o(B^2)| */ mpn_add_n (v1pn, v1en, v1on, k1); signed_mpn_sub_n(v1mn, v1en, v1on, k1); /* compute h(B) = f1(B)^2 and h(-B) = |f1(-B)|^2 hn_neg is cleared since h(-B) is never negative */ mpn_sqr(v3pn, v1pn, k1); mpn_sqr(v3mn, v1mn, k1); v3m_neg = 0; } /* Each coefficient of h(B) is up to 4b bits long, so h(B) needs at most ((n1 + n2 + 2) * b + 1) bits. (The extra +1 is to accommodate carries generated by overlapping coefficients.) The buffer has at least ((n1 + n2 + 2) * b + 2) bits. Therefore we can safely store 2*h(B) etc. */ /* compute 2 * he(B^2) = h(B) + h(-B) and B * 2 * ho(B^2) = h(B) - h(-B) */ if (v3m_neg) { mpn_sub_n(v3en, v3pn, v3mn, k3); mpn_add_n (v3on, v3pn, v3mn, k3); } else { mpn_add_n (v3en, v3pn, v3mn, k3); mpn_sub_n (v3on, v3pn, v3mn, k3); } /* ------------------------------------------------------------------------- "reciprocal" evaluation points */ /* correction factors to take into account that if a polynomial has even length, its even and odd coefficients are swapped when the polynomial is reversed */ a1 = (n1 & 1) ? 0 : b; a2 = (n2 & 1) ? 0 : b; a3 = (n3 & 1) ? 0 : b; if (!sqr) { /* multiplication version */ /* evaluate B^(n1-1) * f1e(1/B^2) and B^(n1-2) * f1o(1/B^2) */ _nmod_poly_KS2_pack(v1er, op1 + 2*(n1e - 1), n1e, -2, 2 * b, a1, k1); _nmod_poly_KS2_pack(v1or, op1 + 1 + 2*(n1o - 1), n1o, -2, 2 * b, b - a1, k1); /* compute B^(n1-1) * f1(1/B) = B^(n1-1) * f1e(1/B^2) + B^(n1-2) * f1o(1/B^2) and |B^(n1-1) * f1(-1/B)| = |B^(n1-1) * f1e(1/B^2) - B^(n1-2) * f1o(1/B^2)| */ mpn_add_n(v1pr, v1er, v1or, k1); v3m_neg = signed_mpn_sub_n(v1mr, v1er, v1or, k1); /* evaluate B^(n2-1) * f2e(1/B^2) and B^(n2-2) * f2o(1/B^2) */ _nmod_poly_KS2_pack(v2er, op2 + 2*(n2e - 1), n2e, -2, 2 * b, a2, k2); _nmod_poly_KS2_pack(v2or, op2 + 1 + 2*(n2o - 1), n2o, -2, 2 * b, b - a2, k2); /* compute B^(n2-1) * f2(1/B) = B^(n2-1) * f2e(1/B^2) + B^(n2-2) * f2o(1/B^2) and |B^(n1-1) * f2(-1/B)| = |B^(n2-1) * f2e(1/B^2) - B^(n2-2) * f2o(1/B^2)| */ mpn_add_n (v2pr, v2er, v2or, k2); v3m_neg ^= signed_mpn_sub_n(v2mr, v2er, v2or, k2); /* compute B^(n3-1) * h(1/B) = (B^(n1-1) * f1(1/B)) * (B^(n2-1) * f2(1/B)) and |B^(n3-1) * h(-1/B)| = |B^(n1-1) * f1(-1/B)| * |B^(n2-1) * f2(-1/B)| hr_neg is set if h(-1/B) is negative */ mpn_mul(v3pr, v1pr, k1, v2pr, k2); mpn_mul(v3mr, v1mr, k1, v2mr, k2); } else { /* squaring version */ /* evaluate B^(n1-1) * f1e(1/B^2) and B^(n1-2) * f1o(1/B^2) */ _nmod_poly_KS2_pack(v1er, op1 + 2*(n1e - 1), n1e, -2, 2 * b, a1, k1); _nmod_poly_KS2_pack(v1or, op1 + 1 + 2*(n1o - 1), n1o, -2, 2 * b, b - a1, k1); /* compute B^(n1-1) * f1(1/B) = B^(n1-1) * f1e(1/B^2) + B^(n1-2) * f1o(1/B^2) and |B^(n1-1) * f1(-1/B)| = |B^(n1-1) * f1e(1/B^2) - B^(n1-2) * f1o(1/B^2)| */ mpn_add_n(v1pr, v1er, v1or, k1); signed_mpn_sub_n(v1mr, v1er, v1or, k1); /* compute B^(n3-1) * h(1/B) = (B^(n1-1) * f1(1/B))^2 and B^(n3-1) * h(-1/B) = |B^(n1-1) * f1(-1/B)|^2 hr_neg is cleared since h(-1/B) is never negative */ mpn_sqr(v3pr, v1pr, k1); mpn_sqr(v3mr, v1mr, k1); v3m_neg = 0; } /* compute 2 * B^(n3-1) * he(1/B^2) = B^(n3-1) * h(1/B) + B^(n3-1) * h(-1/B) and 2 * B^(n3-2) * ho(1/B^2) = B^(n3-1) * h(1/B) - B^(n3-1) * h(-1/B) */ if (v3m_neg) { mpn_sub_n(v3er, v3pr, v3mr, k3); mpn_add_n(v3or, v3pr, v3mr, k3); } else { mpn_add_n (v3er, v3pr, v3mr, k3); mpn_sub_n (v3or, v3pr, v3mr, k3); } /* ------------------------------------------------------------------------- combine "normal" and "reciprocal" information */ /* decompose he(B^2) and B^(2*(n3e-1)) * he(1/B^2) into base-B^2 digits */ _nmod_poly_KS2_unpack(zn, v3en, n3e + 1, 2 * b, 1); _nmod_poly_KS2_unpack(zr, v3er, n3e + 1, 2 * b, a3 + 1); /* combine he(B^2) and he(1/B^2) information to get even coefficients of h */ _nmod_poly_KS2_recover_reduce(res, 2, zn, zr, n3e, 2 * b, mod); /* decompose ho(B^2) and B^(2*(n3o-1)) * ho(1/B^2) into base-B^2 digits */ _nmod_poly_KS2_unpack(zn, v3on, n3o + 1, 2 * b, b + 1); _nmod_poly_KS2_unpack(zr, v3or, n3o + 1, 2 * b, b - a3 + 1); /* combine ho(B^2) and ho(1/B^2) information to get odd coefficients of h */ _nmod_poly_KS2_recover_reduce(res + 1, 2, zn, zr, n3o, 2 * b, mod); TMP_END; } void nmod_poly_mul_KS4(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2) { slong len_out; if ((poly1->length == 0) || (poly2->length == 0)) { nmod_poly_zero(res); return; } len_out = poly1->length + poly2->length - 1; if (res == poly1 || res == poly2) { nmod_poly_t temp; nmod_poly_init2_preinv(temp, poly1->mod.n, poly1->mod.ninv, len_out); if (poly1->length >= poly2->length) _nmod_poly_mul_KS4(temp->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, poly1->mod); else _nmod_poly_mul_KS4(temp->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, poly1->mod); nmod_poly_swap(res, temp); nmod_poly_clear(temp); } else { nmod_poly_fit_length(res, len_out); if (poly1->length >= poly2->length) _nmod_poly_mul_KS4(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, poly1->mod); else _nmod_poly_mul_KS4(res->coeffs, poly2->coeffs, poly2->length, poly1->coeffs, poly1->length, poly1->mod); } res->length = len_out; _nmod_poly_normalise(res); }