/*
Copyright (C) 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "flint.h"
#include "nmod_vec.h"
#include "nmod_poly.h"
#include "ulong_extras.h"
/*
compute f^0, f^1, ..., f^(n-1) mod g, where g has length glen and f is
reduced mod g and has length flen (possibly zero spaced)
assumes res is an array of n arrays each with space for at least glen - 1
coefficients and that flen > 0
{ginv, ginvlen} must be set to the power series inverse of the reverse of g
*/
void
_nmod_poly_powers_mod_preinv_naive(mp_ptr * res, mp_srcptr f, slong flen, slong n,
mp_srcptr g, slong glen, mp_srcptr ginv, slong ginvlen, const nmod_t mod)
{
slong i;
if (n == 0)
return;
/* f^0 = 1 */
if (glen > 1)
res[0][0] = 1;
if (glen > 2)
flint_mpn_zero(res[0] + 1, glen - 2);
if (n == 1)
return;
/* f^1 = f */
_nmod_vec_set(res[1], f, flen);
flint_mpn_zero(res[1] + flen, glen - flen - 1);
if (n == 2)
return;
/* f^i = f^(i - 1)*f */
if (glen == 2) /* special case, constant polys */
{
for (i = 2; i < n; i++)
res[i][0] = n_mulmod2_preinv(res[i - 1][0], res[1][0],
mod.n, mod.ninv);
} else
{
for (i = 2; i < n; i++)
_nmod_poly_mulmod_preinv(res[i], res[i - 1], glen - 1, res[1],
glen - 1, g, glen, ginv, ginvlen, mod);
}
}
void
nmod_poly_powers_mod_naive(nmod_poly_struct * res, const nmod_poly_t f,
slong n, const nmod_poly_t g)
{
slong i;
nmod_poly_t ginv;
mp_ptr * res_arr;
if (nmod_poly_length(g) == 0)
{
flint_printf("Exception (nmod_poly_powers_mod_naive). Divide by zero.\n");
flint_abort();
}
if (nmod_poly_length(f) == 0 || nmod_poly_length(g) == 1)
{
if (n > 0)
nmod_poly_one(res + 0);
for (i = 1; i < n; i++)
nmod_poly_zero(res + i);
return;
}
if (nmod_poly_length(f) >= nmod_poly_length(g))
{
nmod_poly_t q, r;
nmod_poly_init_mod(q, f->mod);
nmod_poly_init_mod(r, f->mod);
nmod_poly_divrem(q, r, f, g);
nmod_poly_powers_mod_naive(res, r, n, g);
nmod_poly_clear(q);
nmod_poly_clear(r);
return;
}
res_arr = (mp_ptr *) flint_malloc(n*sizeof(mp_ptr));
nmod_poly_init_mod(ginv, g->mod);
for (i = 0; i < n; i++)
{
nmod_poly_fit_length(res + i, nmod_poly_length(g) - 1);
res_arr[i] = res[i].coeffs;
_nmod_poly_set_length(res + i, nmod_poly_length(g) - 1);
}
nmod_poly_reverse(ginv, g, nmod_poly_length(g));
nmod_poly_inv_series(ginv, ginv, nmod_poly_length(g));
_nmod_poly_powers_mod_preinv_naive(res_arr, f->coeffs, f->length, n,
g->coeffs, g->length, ginv->coeffs, ginv->length, g->mod);
for (i = 0; i < n; i++)
_nmod_poly_normalise(res + i);
nmod_poly_clear(ginv);
flint_free(res_arr);
}