/* Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "ulong_extras.h" /* compute f^0, f^1, ..., f^(n-1) mod g, where g has length glen and f is reduced mod g and has length flen (possibly zero spaced) assumes res is an array of n arrays each with space for at least glen - 1 coefficients and that flen > 0 {ginv, ginvlen} must be set to the power series inverse of the reverse of g */ void _nmod_poly_powers_mod_preinv_naive(mp_ptr * res, mp_srcptr f, slong flen, slong n, mp_srcptr g, slong glen, mp_srcptr ginv, slong ginvlen, const nmod_t mod) { slong i; if (n == 0) return; /* f^0 = 1 */ if (glen > 1) res[0][0] = 1; if (glen > 2) flint_mpn_zero(res[0] + 1, glen - 2); if (n == 1) return; /* f^1 = f */ _nmod_vec_set(res[1], f, flen); flint_mpn_zero(res[1] + flen, glen - flen - 1); if (n == 2) return; /* f^i = f^(i - 1)*f */ if (glen == 2) /* special case, constant polys */ { for (i = 2; i < n; i++) res[i][0] = n_mulmod2_preinv(res[i - 1][0], res[1][0], mod.n, mod.ninv); } else { for (i = 2; i < n; i++) _nmod_poly_mulmod_preinv(res[i], res[i - 1], glen - 1, res[1], glen - 1, g, glen, ginv, ginvlen, mod); } } void nmod_poly_powers_mod_naive(nmod_poly_struct * res, const nmod_poly_t f, slong n, const nmod_poly_t g) { slong i; nmod_poly_t ginv; mp_ptr * res_arr; if (nmod_poly_length(g) == 0) { flint_printf("Exception (nmod_poly_powers_mod_naive). Divide by zero.\n"); flint_abort(); } if (nmod_poly_length(f) == 0 || nmod_poly_length(g) == 1) { if (n > 0) nmod_poly_one(res + 0); for (i = 1; i < n; i++) nmod_poly_zero(res + i); return; } if (nmod_poly_length(f) >= nmod_poly_length(g)) { nmod_poly_t q, r; nmod_poly_init_mod(q, f->mod); nmod_poly_init_mod(r, f->mod); nmod_poly_divrem(q, r, f, g); nmod_poly_powers_mod_naive(res, r, n, g); nmod_poly_clear(q); nmod_poly_clear(r); return; } res_arr = (mp_ptr *) flint_malloc(n*sizeof(mp_ptr)); nmod_poly_init_mod(ginv, g->mod); for (i = 0; i < n; i++) { nmod_poly_fit_length(res + i, nmod_poly_length(g) - 1); res_arr[i] = res[i].coeffs; _nmod_poly_set_length(res + i, nmod_poly_length(g) - 1); } nmod_poly_reverse(ginv, g, nmod_poly_length(g)); nmod_poly_inv_series(ginv, ginv, nmod_poly_length(g)); _nmod_poly_powers_mod_preinv_naive(res_arr, f->coeffs, f->length, n, g->coeffs, g->length, ginv->coeffs, ginv->length, g->mod); for (i = 0; i < n; i++) _nmod_poly_normalise(res + i); nmod_poly_clear(ginv); flint_free(res_arr); }