/* Copyright (C) 2010 Sebastian Pancratz Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "ulong_extras.h" #define FLINT_REVERSE_NEWTON_CUTOFF 15 void _nmod_poly_revert_series_newton(mp_ptr Qinv, mp_srcptr Q, slong n, nmod_t mod) { slong *a, i, k; mp_ptr T, U, V; if (n >= 1) Qinv[0] = UWORD(0); if (n >= 2) Qinv[1] = n_invmod(Q[1], mod.n); if (n <= 2) return; T = _nmod_vec_init(n); U = _nmod_vec_init(n); V = _nmod_vec_init(n); k = n; for (i = 1; (WORD(1) << i) < k; i++); a = (slong *) flint_malloc(i * sizeof(slong)); a[i = 0] = k; while (k >= FLINT_REVERSE_NEWTON_CUTOFF) a[++i] = (k = (k + 1) / 2); _nmod_poly_revert_series_lagrange(Qinv, Q, k, mod); _nmod_vec_zero(Qinv + k, n - k); for (i--; i >= 0; i--) { k = a[i]; _nmod_poly_compose_series(T, Q, k, Qinv, k, k, mod); _nmod_poly_derivative(U, T, k, mod); U[k - 1] = UWORD(0); T[1] = UWORD(0); _nmod_poly_div_series(V, T, k, U, k, k, mod); _nmod_poly_derivative(T, Qinv, k, mod); _nmod_poly_mullow(U, V, k, T, k, k, mod); _nmod_vec_sub(Qinv, Qinv, U, k, mod); } flint_free(a); _nmod_vec_clear(T); _nmod_vec_clear(U); _nmod_vec_clear(V); } void nmod_poly_revert_series_newton(nmod_poly_t Qinv, const nmod_poly_t Q, slong n) { mp_ptr Qinv_coeffs, Q_coeffs; nmod_poly_t t1; slong Qlen; Qlen = Q->length; if (Qlen < 2 || Q->coeffs[0] != 0 || Q->coeffs[1] == 0) { flint_printf("Exception (nmod_poly_revert_series_newton). Input must have \n" "zero constant and an invertible coefficient of x^1.\n"); flint_abort(); } if (Qlen < n) { Q_coeffs = _nmod_vec_init(n); flint_mpn_copyi(Q_coeffs, Q->coeffs, Qlen); flint_mpn_zero(Q_coeffs + Qlen, n - Qlen); } else Q_coeffs = Q->coeffs; if (Q == Qinv && Qlen >= n) { nmod_poly_init2(t1, Q->mod.n, n); Qinv_coeffs = t1->coeffs; } else { nmod_poly_fit_length(Qinv, n); Qinv_coeffs = Qinv->coeffs; } _nmod_poly_revert_series_newton(Qinv_coeffs, Q_coeffs, n, Q->mod); if (Q == Qinv && Qlen >= n) { nmod_poly_swap(Qinv, t1); nmod_poly_clear(t1); } Qinv->length = n; if (Qlen < n) _nmod_vec_clear(Q_coeffs); _nmod_poly_normalise(Qinv); }