/*
Copyright (C) 2016 Vincent Delecroix
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "ulong_extras.h"
#include "nmod_poly.h"
int
main(void)
{
int l, result;
mp_limb_t i, j, k, tot;
FLINT_TEST_INIT(state);
flint_printf("power_sums_naive....");
/* Check that it is valid in degree 3 with integer roots, ie */
/* for polynomials of the form (x-i)(x-j)(x-k) */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
{
mp_limb_t n;
nmod_t mod;
nmod_poly_t a, b, c, d;
do {
n = n_randtest_prime(state, 1);
} while(n < 4);
nmod_init(&mod, n);
nmod_poly_init(a, n);
nmod_poly_init(b, n);
nmod_poly_init(c, n);
nmod_poly_init(d, n);
nmod_poly_randtest(b, state, 40);
nmod_poly_randtest(c, state, 40);
nmod_poly_randtest(d, state, 40);
nmod_poly_set_coeff_ui(a, 0, nmod_neg((i*j*k) % n, mod));
nmod_poly_set_coeff_ui(a, 1, i * j + i * k + j * k);
nmod_poly_set_coeff_ui(a, 2, nmod_neg((i + j + k) % n, mod));
nmod_poly_set_coeff_ui(a, 3, 1);
nmod_poly_power_sums_naive(b, a, 20);
nmod_poly_set(d, a);
nmod_poly_power_sums_naive(d, d, 20);
for (l = 0; l < FLINT_MIN(20, nmod_poly_length(b)); l++)
{
tot = nmod_add(nmod_pow_ui(i, l, mod),
nmod_pow_ui(j, l, mod), mod);
tot = nmod_add(tot, nmod_pow_ui(k, l, mod), mod);
result = nmod_poly_get_coeff_ui(b, l) == tot &&
nmod_poly_get_coeff_ui(d, l) == tot;
if (!result)
{
flint_printf("FAIL: power sums integral root\n");
flint_printf("%d %d %d %d\n", i, j, k, l);
flint_printf("a = "), nmod_poly_print(a),
flint_printf("\n");
flint_printf("b = "), nmod_poly_print(b),
flint_printf("\n");
flint_printf("d = "), nmod_poly_print(d),
flint_printf("\n");
abort();
}
}
nmod_poly_power_sums_to_poly_naive(c, b);
nmod_poly_set(d, b);
nmod_poly_power_sums_to_poly_naive(d, d);
result = nmod_poly_equal(a, c) && nmod_poly_equal(a, d);
if (!result)
{
flint_printf("FAIL: power sums to poly naive\n");
flint_printf("a = "), nmod_poly_print(a),
flint_printf("\n\n");
flint_printf("b = "), nmod_poly_print(b),
flint_printf("\n\n");
flint_printf("c = "), nmod_poly_print(c),
flint_printf("\n\n");
flint_printf("d = "), nmod_poly_print(c),
flint_printf("\n\n");
abort();
}
nmod_poly_clear(a);
nmod_poly_clear(b);
nmod_poly_clear(c);
nmod_poly_clear(d);
}
/* Check that going back and forth between the power sums representation gives the identity */
for (i = 0; i < 50 * flint_test_multiplier(); i++)
{
nmod_poly_t a, b, c, d;
mp_limb_t n;
do{
n = n_randtest_prime(state, 1);
}while(n < 50);
nmod_poly_init(a, n);
nmod_poly_init(b, n);
nmod_poly_init(c, n);
nmod_poly_init(d, n);
nmod_poly_randtest(c, state, 50);
nmod_poly_randtest(d, state, 50);
nmod_poly_randtest_not_zero(a, state, 1 + n_randint(state, 20));
nmod_poly_make_monic(a, a);
nmod_poly_power_sums_naive(b, a, 30);
nmod_poly_power_sums_to_poly_naive(c, b);
nmod_poly_set(d, a);
nmod_poly_power_sums_naive(d, d, 30);
nmod_poly_power_sums_to_poly_naive(d, d);
result = nmod_poly_equal(a, c) && nmod_poly_equal(a, d);
if (!result)
{
flint_printf("FAIL: power sums - power sums to poly\n");
flint_printf("a = "), nmod_poly_print(a), flint_printf("\n\n");
flint_printf("b = "), nmod_poly_print(b), flint_printf("\n\n");
flint_printf("c = "), nmod_poly_print(c), flint_printf("\n\n");
flint_printf("d = "), nmod_poly_print(c), flint_printf("\n\n");
abort();
}
nmod_poly_clear(a);
nmod_poly_clear(b);
nmod_poly_clear(c);
nmod_poly_clear(d);
}
/* Check that the product of polynomials correspond to the sum of Power sums series */
for (i = 0; i < 20 * flint_test_multiplier(); i++)
{
nmod_poly_t a, b, c, d;
mp_limb_t n;
do{
n = n_randtest_prime(state, 1);
}while(n < 20);
nmod_poly_init(a, n);
nmod_poly_init(b, n);
nmod_poly_init(c, n);
nmod_poly_init(d, n);
nmod_poly_randtest_not_zero(a, state, 1 + n_randint(state, 10));
nmod_poly_randtest_not_zero(b, state, 1 + n_randint(state, 10));
nmod_poly_randtest(c, state, 30);
nmod_poly_randtest(d, state, 30);
nmod_poly_mul(c, a, b);
nmod_poly_power_sums_naive(c, c, 20);
/* NOTE: the code path is not the same if the polynomial is monic. We let only a be monic */
nmod_poly_make_monic(a, a);
nmod_poly_power_sums_naive(a, a, 20);
nmod_poly_power_sums_naive(b, b, 20);
nmod_poly_add(d, a, b);
result = nmod_poly_equal(c, d);
if (!result)
{
flint_printf
("FAIL: PowerSums(p1 p2) = PowerSums(p1) + PowerSums(p2)\n");
flint_printf("a = ");
nmod_poly_print(a), flint_printf("\n");
flint_printf("b = ");
nmod_poly_print(b), flint_printf("\n");
flint_printf("c = ");
nmod_poly_print(c), flint_printf("\n");
flint_printf("d = ");
nmod_poly_print(d), flint_printf("\n");
abort();
}
nmod_poly_clear(a);
nmod_poly_clear(b);
nmod_poly_clear(c);
nmod_poly_clear(d);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}