/* Copyright (C) 2012 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "padic.h" #include "ulong_extras.h" /* Carries out the finite series evaluation for the logarithm \begin{equation*} \sum_{i=1}^{n} a_i x^i = \sum_{j=0}^{\ceil{n/b} - 1} \Bigl( \sum_{i=1}^b a_{i+jb} x^i \Bigr) x^{jb} \end{equation*} where $a_i = 1/i$ with the choice $b = \floor{\sqrt{n}}$, all modulo $p^N$, where also $P = p^N$. Does not support aliasing. */ static void _padic_log_rectangular_series(fmpz_t z, const fmpz_t y, slong n, const fmpz_t p, slong N, const fmpz_t P0) { if (n <= 2) { if (n == 1) { fmpz_mod(z, y, P0); } else /* n == 2; z = y(1 + y/2) */ { if (fmpz_is_even(y)) { fmpz_fdiv_q_2exp(z, y, 1); } else /* => p and y are odd */ { fmpz_add(z, y, P0); fmpz_fdiv_q_2exp(z, z, 1); } fmpz_add_ui(z, z, 1); fmpz_mul(z, z, y); fmpz_mod(z, z, P0); } } else { const slong b = n_sqrt(n); const slong k = fmpz_fits_si(p) ? n_flog(n, fmpz_get_si(p)) : 0; slong i, j; fmpz_t c, f, t, P1; fmpz *ypow; ypow = _fmpz_vec_init(b + 1); fmpz_init(c); fmpz_init(f); fmpz_init(t); fmpz_init(P1); fmpz_pow_ui(P1, p, N + k); fmpz_one(ypow + 0); for (i = 1; i <= b; i++) { fmpz_mul(ypow + i, ypow + (i - 1), y); fmpz_mod(ypow + i, ypow + i, P1); } fmpz_zero(z); for (j = (n + (b - 1)) / b - 1; j >= 0; j--) { const slong hi = FLINT_MIN(b, n - j*b); slong w; /* Compute inner sum in c */ fmpz_rfac_uiui(f, 1 + j*b, hi); fmpz_zero(c); for (i = 1; i <= hi; i++) { fmpz_divexact_ui(t, f, i + j*b); fmpz_addmul(c, t, ypow + i); } /* Multiply c by p^k f^{-1} */ w = fmpz_remove(f, f, p); _padic_inv(f, f, p, N); if (w > k) { fmpz_pow_ui(t, p, w - k); fmpz_divexact(c, c, t); } else { fmpz_pow_ui(t, p, k - w); fmpz_mul(c, c, t); } fmpz_mul(c, c, f); /* Set z = z y^b + c */ fmpz_mul(t, z, ypow + b); fmpz_add(z, c, t); fmpz_mod(z, z, P1); } fmpz_pow_ui(f, p, k); fmpz_divexact(z, z, f); fmpz_clear(c); fmpz_clear(f); fmpz_clear(t); fmpz_clear(P1); _fmpz_vec_clear(ypow, b + 1); } } void _padic_log_rectangular(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N) { const slong n = _padic_log_bound(v, N, p) - 1; fmpz_t pN; fmpz_init(pN); fmpz_pow_ui(pN, p, N); _padic_log_rectangular_series(z, y, n, p, N, pN); fmpz_sub(z, pN, z); fmpz_clear(pN); } int padic_log_rectangular(padic_t rop, const padic_t op, const padic_ctx_t ctx) { const fmpz *p = ctx->p; const slong N = padic_prec(rop); if (padic_val(op) < 0) { return 0; } else { fmpz_t x; int ans; fmpz_init(x); padic_get_fmpz(x, op, ctx); fmpz_sub_ui(x, x, 1); fmpz_neg(x, x); if (fmpz_is_zero(x)) { padic_zero(rop); ans = 1; } else { fmpz_t t; slong v; fmpz_init(t); v = fmpz_remove(t, x, p); fmpz_clear(t); if (v >= 2 || (!fmpz_equal_ui(p, 2) && v >= 1)) { if (v >= N) { padic_zero(rop); } else { _padic_log_rectangular(padic_unit(rop), x, v, p, N); padic_val(rop) = 0; _padic_canonicalise(rop, ctx); } ans = 1; } else { ans = 0; } } fmpz_clear(x); return ans; } }