/* Copyright (C) 2012 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mod_poly.h" #include "qadic.h" /* Assumes that P, T are vectors of length 2 d - 1. Assumes that 0 < len <= d. Assumes that 1 <= lo < hi. Does not support aliasing. */ static void _qadic_log_bsplit_series(fmpz *P, fmpz_t B, fmpz *T, const fmpz *y, slong len, slong lo, slong hi, const fmpz *a, const slong *j, slong lena) { const slong d = j[lena - 1]; if (hi - lo == 1) { _fmpz_vec_set(P, y, len); _fmpz_vec_zero(P + len, 2*d - 1 - len); fmpz_set_si(B, lo); _fmpz_vec_set(T, P, 2*d - 1); } else if (hi - lo == 2) { _fmpz_poly_sqr(P, y, len); _fmpz_vec_zero(P + (2*len - 1), d - (2*len - 1)); _fmpz_poly_reduce(P, 2*len - 1, a, j, lena); fmpz_set_si(B, lo); fmpz_mul_si(B, B, lo + 1); _fmpz_vec_scalar_mul_si(T, y, len, lo + 1); _fmpz_vec_zero(T + len, d - len); _fmpz_vec_scalar_addmul_si(T, P, d, lo); } else { const slong m = (lo + hi) / 2; fmpz *RP, *RT, *W; fmpz_t RB; RP = _fmpz_vec_init(2*d - 1); RT = _fmpz_vec_init(2*d - 1); W = _fmpz_vec_init(2*d - 1); fmpz_init(RB); _qadic_log_bsplit_series(P, B, T, y, len, lo, m, a, j, lena); _qadic_log_bsplit_series(RP, RB, RT, y, len, m, hi, a, j, lena); _fmpz_poly_mul(W, RT, d, P, d); _fmpz_poly_reduce(W, 2*d - 1, a, j, lena); _fmpz_vec_swap(RT, W, d); _fmpz_vec_scalar_mul_fmpz(T, T, d, RB); _fmpz_vec_scalar_addmul_fmpz(T, RT, d, B); _fmpz_poly_mul(W, P, d, RP, d); _fmpz_poly_reduce(W, 2*d - 1, a, j, lena); _fmpz_vec_swap(P, W, d); fmpz_mul(B, B, RB); _fmpz_vec_clear(RP, 2*d - 1); _fmpz_vec_clear(RT, 2*d - 1); _fmpz_vec_clear(W, 2*d - 1); fmpz_clear(RB); } } /* Sets (z, d) to the sum sum_{i=1}^{\infty} y^i / i mod p^N. The result may not be reduced modulo p^N, but it is reduced modulo f(X) given by the data (a, j, lena). Supports aliasing between y and z. */ static void _qadic_log_bsplit(fmpz *z, const fmpz *y, slong v, slong len, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N) { const slong d = j[lena - 1]; fmpz *P, *T; fmpz_t B, C; slong n; n = _padic_log_bound(v, N, p); n = FLINT_MAX(n, 2); P = _fmpz_vec_init(2*d - 1); T = _fmpz_vec_init(2*d - 1); fmpz_init(B); fmpz_init(C); _qadic_log_bsplit_series(P, B, T, y, len, 1, n, a, j, lena); n = fmpz_remove(B, B, p); fmpz_pow_ui(C, p, n); _fmpz_vec_scalar_divexact_fmpz(T, T, d, C); _padic_inv(B, B, p, N); _fmpz_vec_scalar_mul_fmpz(z, T, d, B); _fmpz_vec_clear(P, 2*d - 1); _fmpz_vec_clear(T, 2*d - 1); fmpz_clear(B); fmpz_clear(C); } /* Computes \begin{equation*} z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}. \end{equation*} Note that this can be used to compute the $p$-adic logarithm via the equation \begin{align*} \log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\ & = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}. \end{align*} Assumes that $y = 1 - x$ is non-zero and that $v = \ord_p(y)$ is at least $1$ when $p$ is odd and at least $2$ when $p = 2$ so that the series converges. Assumes that $v < N$. Sets $(z, d)$. Ensures that the result is reduced modulo $p^N$. Does not support aliasing between $y$ and $z$. */ void _qadic_log_balanced(fmpz *z, const fmpz *y, slong len, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N, const fmpz_t pN) { const slong d = j[lena - 1]; fmpz_t pv; fmpz *r, *s, *t, *u; slong i, w; r = _fmpz_vec_init(d); s = _fmpz_vec_init(2*d - 1); t = _fmpz_vec_init(d); u = _fmpz_vec_init(d); fmpz_init(pv); fmpz_set(pv, p); _fmpz_vec_scalar_mod_fmpz(t, y, len, pN); _fmpz_vec_zero(z, d); w = 1; while (!_fmpz_vec_is_zero(t, d)) { fmpz_mul(pv, pv, pv); for (i = 0; i < d; i++) { fmpz_fdiv_qr(t + i, r + i, t + i, pv); } if (!_fmpz_vec_is_zero(t, d)) { _fmpz_vec_scalar_mul_fmpz(t, t, d, pv); /* Temporarily set r = 1 - r to compute u = (1-r)^{-1} */ fmpz_sub_ui(r + 0, r + 0, 1); _fmpz_vec_neg(r, r, d); _qadic_inv(u, r, d, a, j, lena, p, N); _fmpz_vec_neg(r, r, d); fmpz_add_ui(r + 0, r + 0, 1); _fmpz_poly_mul(s, t, d, u, d); _fmpz_poly_reduce(s, 2 * d - 1, a, j, lena); _fmpz_vec_scalar_mod_fmpz(t, s, d, pN); } if (!_fmpz_vec_is_zero(r, d)) { _qadic_log_bsplit(r, r, w, d, a, j, lena, p, N); _fmpz_vec_sub(z, z, r, d); _fmpz_vec_scalar_mod_fmpz(z, z, d, pN); } w *= 2; } _fmpz_vec_clear(r, d); _fmpz_vec_clear(s, 2*d - 1); _fmpz_vec_clear(t, d); _fmpz_vec_clear(u, d); fmpz_clear(pv); } int qadic_log_balanced(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx) { const fmpz *p = (&ctx->pctx)->p; const slong d = qadic_ctx_degree(ctx); const slong N = qadic_prec(rop); const slong len = op->length; if (op->val < 0) { return 0; } else { fmpz *x; fmpz_t pN; int alloc, ans; x = _fmpz_vec_init(len + 1); alloc = _padic_ctx_pow_ui(pN, N, &ctx->pctx); /* Set x := (1 - op) mod p^N */ fmpz_pow_ui(x + len, p, op->val); _fmpz_vec_scalar_mul_fmpz(x, op->coeffs, len, x + len); fmpz_sub_ui(x + 0, x + 0, 1); _fmpz_vec_neg(x, x, len); _fmpz_vec_scalar_mod_fmpz(x, x, len, pN); if (_fmpz_vec_is_zero(x, len)) { padic_poly_zero(rop); ans = 1; } else { const slong v = _fmpz_vec_ord_p(x, len, p); if (v >= 2 || (*p != WORD(2) && v >= 1)) { if (v >= N) { padic_poly_zero(rop); } else { padic_poly_fit_length(rop, d); _qadic_log_balanced(rop->coeffs, x, len, ctx->a, ctx->j, ctx->len, p, N, pN); rop->val = 0; _padic_poly_set_length(rop, d); _padic_poly_normalise(rop); padic_poly_canonicalise(rop, p); } ans = 1; } else { ans = 0; } } _fmpz_vec_clear(x, len + 1); if (alloc) fmpz_clear(pN); return ans; } }