/* Copyright (C) 2012 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mod_poly.h" #include "qadic.h" /* Carries out the finite series evaluation for the logarithm \begin{equation*} \sum_{i=1}^{n} a_i y^i = \sum_{j=0}^{\ceil{n/b}-1} \Bigl(\sum_{i=1}^b a_{i+jb} y^i\Bigr) y^{jb} \end{equation*} where $a_i = 1/i$ with the choice $b = \floor{\sqrt{n}}$, all modulo $p^N$, where also $P = p^N$. Assumes that $y$ is reduced modulo $p^N$. Assumes that $z$ has space for $2d - 1$ coefficients, but sets only the first $d$ to meaningful values on exit. Supports aliasing between $y$ and $z$. */ static void _qadic_log_rectangular_series(fmpz *z, const fmpz *y, slong len, slong n, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N, const fmpz_t pN) { const slong d = j[lena - 1]; if (n <= 2) { if (n == 1) /* n == 1; z = y */ { _fmpz_vec_set(z, y, len); _fmpz_vec_zero(z + len, d - len); } else /* n == 2; z = y + y^2/2 */ { slong i; fmpz *t; t = _fmpz_vec_init(2 * len - 1); _fmpz_poly_sqr(t, y, len); for (i = 0; i < 2 * len - 1; i++) if (fmpz_is_even(t + i)) { fmpz_fdiv_q_2exp(t + i, t + i, 1); } else /* => p and t(i) are odd */ { fmpz_add(t + i, t + i, pN); fmpz_fdiv_q_2exp(t + i, t + i, 1); } _fmpz_mod_poly_reduce(t, 2 * len - 1, a, j, lena, pN); _fmpz_mod_poly_add(z, y, len, t, FLINT_MIN(d, 2 * len - 1), pN); _fmpz_vec_clear(t, 2 * len - 1); } } else /* n >= 3 */ { const slong b = n_sqrt(n); const slong k = fmpz_fits_si(p) ? n_flog(n, fmpz_get_si(p)) : 0; slong i, h; fmpz_t f, pNk; fmpz *c, *t, *ypow; c = _fmpz_vec_init(d); t = _fmpz_vec_init(2 * d - 1); ypow = _fmpz_vec_init((b + 1) * d + d - 1); fmpz_init(f); fmpz_init(pNk); fmpz_pow_ui(pNk, p, N + k); fmpz_one(ypow); _fmpz_vec_set(ypow + d, y, len); for (i = 2; i <= b; i++) { _fmpz_mod_poly_mul(ypow + i * d, ypow + (i - 1) * d, d, y, len, pNk); _fmpz_mod_poly_reduce(ypow + i * d, d + len - 1, a, j, lena, pNk); } _fmpz_vec_zero(z, d); for (h = (n + (b - 1)) / b - 1; h >= 0; h--) { const slong hi = FLINT_MIN(b, n - h*b); slong w; /* Compute inner sum in c */ fmpz_rfac_uiui(f, 1 + h*b, hi); _fmpz_vec_zero(c, d); for (i = 1; i <= hi; i++) { fmpz_divexact_ui(t, f, i + h*b); _fmpz_vec_scalar_addmul_fmpz(c, ypow + i * d, d, t); } /* Multiply c by p^k f */ w = fmpz_remove(f, f, p); _padic_inv(f, f, p, N + k); if (w > k) { fmpz_pow_ui(t, p, w - k); _fmpz_vec_scalar_divexact_fmpz(c, c, d, t); } else if (w < k) { fmpz_pow_ui(t, p, k - w); _fmpz_vec_scalar_mul_fmpz(c, c, d, t); } _fmpz_vec_scalar_mul_fmpz(c, c, d, f); /* Set z = z y^b + c */ _fmpz_mod_poly_mul(t, z, d, ypow + b * d, d, pNk); _fmpz_mod_poly_reduce(t, 2 * d - 1, a, j, lena, pNk); _fmpz_vec_add(z, c, t, d); _fmpz_vec_scalar_mod_fmpz(z, z, d, pNk); } fmpz_pow_ui(f, p, k); _fmpz_vec_scalar_divexact_fmpz(z, z, d, f); fmpz_clear(f); fmpz_clear(pNk); _fmpz_vec_clear(c, d); _fmpz_vec_clear(t, 2 * d - 1); _fmpz_vec_clear(ypow, (b + 1) * d + d - 1); } } void _qadic_log_rectangular(fmpz *z, const fmpz *y, slong v, slong len, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N, const fmpz_t pN) { const slong d = j[lena - 1]; const slong n = _padic_log_bound(v, N, p) - 1; _qadic_log_rectangular_series(z, y, len, n, a, j, lena, p, N, pN); _fmpz_mod_poly_neg(z, z, d, pN); } int qadic_log_rectangular(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx) { const fmpz *p = (&ctx->pctx)->p; const slong d = qadic_ctx_degree(ctx); const slong N = qadic_prec(rop); const slong len = op->length; if (op->val < 0) { return 0; } else { fmpz *x; fmpz_t pN; int alloc, ans; x = _fmpz_vec_init(len + 1); alloc = _padic_ctx_pow_ui(pN, N, &ctx->pctx); /* Set x := (1 - op) mod p^N */ fmpz_pow_ui(x + len, p, op->val); _fmpz_vec_scalar_mul_fmpz(x, op->coeffs, len, x + len); fmpz_sub_ui(x, x, 1); _fmpz_vec_neg(x, x, len); _fmpz_vec_scalar_mod_fmpz(x, x, len, pN); if (_fmpz_vec_is_zero(x, len)) { padic_poly_zero(rop); ans = 1; } else { const slong v = _fmpz_vec_ord_p(x, len, p); if (v >= 2 || (*p != WORD(2) && v >= 1)) { if (v >= N) { padic_poly_zero(rop); } else { padic_poly_fit_length(rop, d); _qadic_log_rectangular(rop->coeffs, x, v, len, ctx->a, ctx->j, ctx->len, p, N, pN); rop->val = 0; _padic_poly_set_length(rop, d); _padic_poly_normalise(rop); padic_poly_canonicalise(rop, p); } ans = 1; } else { ans = 0; } } _fmpz_vec_clear(x, len + 1); if (alloc) fmpz_clear(pN); return ans; } }