/* Copyright (C) 2012 Sebastian Pancratz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "fmpz_mod_poly.h" #include "qadic.h" /* Uses Hensel lifting along the polynomial $X^q - X$, which yields the formula $z' = z - (z^q - z) / (q z^{q-1} - 1)$. We observe that the denominator is an approximation to $q - 1$, which allows us to use the formula $z' = z - (q-1)^{-1} (z^q - z)$ during the iteration. Supports aliasing between \code{rop} and \code{op}. */ void _qadic_teichmuller(fmpz *rop, const fmpz *op, slong len, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N) { const slong d = j[lena - 1]; if (len == 1) { _padic_teichmuller(rop, op, p, N); _fmpz_vec_zero(rop + 1, d - 1); } else if (N == 1) { _fmpz_vec_scalar_mod_fmpz(rop, op, len, p); _fmpz_vec_zero(rop + len, d - len); } else /* d, N >= 2 */ { slong *e, i, n; fmpz *pow, *u, *t, *w; fmpz_t inv, q, qm1; n = FLINT_CLOG2(N) + 1; e = flint_malloc(n * sizeof(slong)); for (e[i = 0] = N; e[i] > 1; i++) e[i + 1] = (e[i] + 1) / 2; w = _fmpz_vec_init(n + n + (2 * d - 1)); pow = w; u = w + n; t = w + 2 * n; fmpz_init(inv); fmpz_init(q); fmpz_init(qm1); fmpz_pow_ui(q, p, d); fmpz_sub_ui(qm1, q, 1); /* Compute powers of p */ { fmpz_one(t); fmpz_set(pow + i, p); } for (i--; i >= 1; i--) { if (e[i] & WORD(1)) { fmpz_mul(pow + i, t, pow + (i + 1)); fmpz_mul(t, t, t); } else { fmpz_mul(t, t, pow + (i + 1)); fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1)); } } { if (e[i] & WORD(1)) fmpz_mul(pow + i, t, pow + (i + 1)); else fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1)); } /* Compute reduced units for (q-1) */ { fmpz_mod(u + 0, qm1, pow + 0); } for (i = 1; i < n; i++) { fmpz_mod(u + i, u + (i - 1), pow + i); } /* Run Newton iteration */ i = n - 1; { _fmpz_vec_scalar_mod_fmpz(rop, op, len, pow + i); _fmpz_vec_zero(rop + len, d - len); fmpz_sub_ui(inv, p, 1); } for (i--; i >= 0; i--) { /* Lift rop */ _qadic_pow(t, rop, d, q, a, j, lena, pow + i); _fmpz_poly_sub(t, t, d, rop, d); _fmpz_vec_scalar_submul_fmpz(rop, t, d, inv); _fmpz_vec_scalar_mod_fmpz(rop, rop, d, pow + i); /* Lift inv */ if (i > 0) { fmpz_mul(t, inv, inv); fmpz_mul(t + 1, u + i, t); fmpz_mul_2exp(inv, inv, 1); fmpz_sub(inv, inv, t + 1); fmpz_mod(inv, inv, pow + i); } } _fmpz_vec_clear(w, n + n + (2 * d - 1)); fmpz_clear(inv); fmpz_clear(q); fmpz_clear(qm1); flint_free(e); } } void qadic_teichmuller(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx) { const slong N = qadic_prec(rop); if (op->val < 0) { flint_printf("Exception (qadic_teichmuller). val(op) is negative.\n"); flint_abort(); } if (qadic_is_zero(op) || op->val > 0 || N <= 0) { qadic_zero(rop); } else { const slong d = qadic_ctx_degree(ctx); padic_poly_fit_length(rop, d); _qadic_teichmuller(rop->coeffs, op->coeffs, op->length, ctx->a, ctx->j, ctx->len, (&ctx->pctx)->p, N); rop->val = 0; _padic_poly_set_length(rop, d); _padic_poly_normalise(rop); } }