/* Copyright (C) 2011 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #define ulong ulongxx /* interferes with system includes */ #include #undef ulong #include #include "flint.h" #include "ulong_extras.h" mp_limb_t n_factor_lehman(mp_limb_t n) { double limit; mp_limb_t cuberoot, k; n_factor_t factors; slong bound; #if FLINT64 /* cannot compute enough primes */ if (n > UWORD(10000000000000000)) return n; #endif if ((n & 1) == 0) return 2; limit = pow(n, 1.0/3.0); cuberoot = (mp_limb_t) ceil(limit); bound = n_prime_pi(cuberoot); n_factor_init(&factors); if (n_factor_trial_range(&factors, n, 0, bound) != n) return factors.p[0]; if ((factors.p[0] = n_factor_one_line(n, FLINT_FACTOR_ONE_LINE_ITERS))) if (factors.p[0] != n) return factors.p[0]; for (k = 1; k <= cuberoot + 1; k++) { double low = 2.0*sqrt((double) k)*sqrt((double) n); mp_limb_t x = (mp_limb_t) ceil(low - 0.0001); mp_limb_t end = (mp_limb_t) floor(0.0001 + low + pow(n, 1.0/6.0)/((double) 4.0*sqrt((double) k))); mp_limb_t sub = k*n*4; for ( ; x <= end; x++) { mp_limb_t p, sq = x*x - sub; if (n_is_square(sq)) { sq = sqrt((double) sq); p = n_gcd(n, x - sq); if (p != 1) return p; } } } return n; }