/* Copyright (C) 2012 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #define ulong ulongxx /* prevent clash with stdlib */ #include #undef ulong #include #include "flint.h" #include "ulong_extras.h" /* bits of n, B1, count */ static slong n_factor_pp1_table[][3] = { {31, 2784, 5}, {32, 1208, 2}, {33, 2924, 3}, {34, 286, 5}, {35, 58, 5}, {36, 61, 4}, {37, 815, 2}, {38, 944, 2}, {39, 61, 3}, {40, 0, 0}, {41, 0, 0}, {42, 0, 0}, {43, 0, 0}, {44, 0, 0}, {45, 0, 0}, {46, 0, 0}, {47, 0, 0}, {47, 0, 0}, {49, 0, 0}, {50, 606, 1}, {51, 2403, 1}, {52, 2524, 1}, {53, 2924, 1}, {54, 3735, 2}, {55, 669, 2}, {56, 6092, 3}, {57, 2179, 3}, {58, 3922, 3}, {59, 6717, 4}, {60, 4119, 4}, {61, 2288, 4}, {62, 9004, 3}, {63, 9004, 3}, {64, 9004, 3}}; #define n_pp1_set(x1, y1, x2, y2) \ do { \ x1 = x2; \ y1 = y2; \ } while (0) #define n_pp1_set_ui(x, norm, c) \ do { \ x = (c << norm); \ } while (0) void n_pp1_print(mp_limb_t x, mp_limb_t y, ulong norm) { if (norm) { x >>= norm; y >>= norm; } flint_printf("[%wu, %wu]", x, y); } #define n_pp1_2k(x, y, n, ninv, x0, norm) \ do { \ const mp_limb_t two = (UWORD(2) << norm); \ y = n_mulmod_preinv(y, x, n, ninv, norm); \ y = n_submod(y, x0, n); \ x = n_mulmod_preinv(x, x, n, ninv, norm); \ x = n_submod(x, two, n); \ } while (0) #define n_pp1_2kp1(x, y, n, ninv, x0, norm) \ do { \ const mp_limb_t two = (UWORD(2) << norm); \ x = n_mulmod_preinv(x, y, n, ninv, norm); \ x = n_submod(x, x0, n); \ y = n_mulmod_preinv(y, y, n, ninv, norm); \ y = n_submod(y, two, n); \ } while (0) void n_pp1_pow_ui(mp_limb_t * x, mp_limb_t * y, ulong exp, mp_limb_t n, mp_limb_t ninv, ulong norm) { const mp_limb_t x0 = *x; const mp_limb_t two = (UWORD(2) << norm); ulong bit = ((UWORD(1) << FLINT_BIT_COUNT(exp)) >> 2); (*y) = n_mulmod_preinv(*x, *x, n, ninv, norm); (*y) = n_submod(*y, two, n); while (bit) { if (exp & bit) n_pp1_2kp1(*x, *y, n, ninv, x0, norm); else n_pp1_2k(*x, *y, n, ninv, x0, norm); bit >>= 1; } } mp_limb_t n_pp1_factor(mp_limb_t n, mp_limb_t x, ulong norm) { if (norm) { n >>= norm; x >>= norm; } x = n_submod(x, 2, n); if (x == 0) return 0; return n_gcd(n, x); } mp_limb_t n_pp1_find_power(mp_limb_t * x, mp_limb_t * y, ulong p, mp_limb_t n, mp_limb_t ninv, ulong norm) { mp_limb_t factor; do { n_pp1_pow_ui(x, y, p, n, ninv, norm); factor = n_pp1_factor(n, *x, norm); } while (factor == 1); return factor; } mp_limb_t n_factor_pp1(mp_limb_t n, ulong B1, ulong c) { slong i, j; mp_limb_t factor = 0; mp_limb_t x, y = 0, oldx, oldy, ninv; ulong pr, oldpr, sqrt, bits0, norm; n_primes_t iter; if ((n % 2) == 0) return 2; n_primes_init(iter); sqrt = n_sqrt(B1); bits0 = FLINT_BIT_COUNT(B1); count_leading_zeros(norm, n); n <<= norm; ninv = n_preinvert_limb(n); n_pp1_set_ui(x, norm, c); /* mul by various prime powers */ pr = 0; oldpr = 0; for (i = 0; pr < B1; ) { j = i + 1024; oldpr = pr; n_pp1_set(oldx, oldy, x, y); for ( ; i < j; i++) { pr = n_primes_next(iter); if (pr < sqrt) { ulong bits = FLINT_BIT_COUNT(pr); ulong exp = bits0 / bits; n_pp1_pow_ui(&x, &y, n_pow(pr, exp), n, ninv, norm); } else n_pp1_pow_ui(&x, &y, pr, n, ninv, norm); } factor = n_pp1_factor(n, x, norm); if (factor == 0) break; if (factor != 1) goto cleanup; } if (pr < B1) /* factor = 0 */ { n_primes_jump_after(iter, oldpr); n_pp1_set(x, y, oldx, oldy); do { pr = n_primes_next(iter); n_pp1_set(oldx, oldy, x, y); if (pr < sqrt) { ulong bits = FLINT_BIT_COUNT(pr); ulong exp = bits0 / bits; n_pp1_pow_ui(&x, &y, n_pow(pr, exp), n, ninv, norm); } else n_pp1_pow_ui(&x, &y, pr, n, ninv, norm); factor = n_pp1_factor(n, x, norm); if (factor == 0) break; if (factor != 1) goto cleanup; } while (1); } else { factor = 0; goto cleanup; } /* factor still 0 */ factor = n_pp1_find_power(&oldx, &oldy, pr, n, ninv, norm); cleanup: n_primes_clear(iter); return factor; } mp_limb_t n_factor_pp1_wrapper(mp_limb_t n) { slong bits = FLINT_BIT_COUNT(n); ulong B1; slong count, i; flint_rand_t state; /* silently fail if trial factoring would always succeed */ if (bits < 31) return 0; B1 = n_factor_pp1_table[bits - 31][1]; count = n_factor_pp1_table[bits - 31][2]; flint_randinit(state); for (i = 0; i < count; i++) { ulong factor; factor = n_factor_pp1(n, B1, n_randint(state, n - 3) + 3); if (factor != 0) { flint_randclear(state); return factor; } } flint_randclear(state); return 0; } /* exists only for tuning/profiling */ void n_factor_pp1_table_insert(slong bits, slong B1, slong count) { n_factor_pp1_table[bits][1] = B1; n_factor_pp1_table[bits][2] = count; }