/*
Copyright (C) 2012 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#define ulong ulongxx /* prevent clash with stdlib */
#include
#undef ulong
#include
#include "flint.h"
#include "ulong_extras.h"
/* bits of n, B1, count */
static slong n_factor_pp1_table[][3] = {
{31, 2784, 5}, {32, 1208, 2}, {33, 2924, 3},
{34, 286, 5}, {35, 58, 5}, {36, 61, 4}, {37, 815, 2},
{38, 944, 2}, {39, 61, 3}, {40, 0, 0}, {41, 0, 0},
{42, 0, 0}, {43, 0, 0}, {44, 0, 0}, {45, 0, 0},
{46, 0, 0}, {47, 0, 0}, {47, 0, 0}, {49, 0, 0},
{50, 606, 1}, {51, 2403, 1}, {52, 2524, 1}, {53, 2924, 1},
{54, 3735, 2}, {55, 669, 2}, {56, 6092, 3}, {57, 2179, 3},
{58, 3922, 3}, {59, 6717, 4}, {60, 4119, 4}, {61, 2288, 4},
{62, 9004, 3}, {63, 9004, 3}, {64, 9004, 3}};
#define n_pp1_set(x1, y1, x2, y2) \
do { \
x1 = x2; \
y1 = y2; \
} while (0)
#define n_pp1_set_ui(x, norm, c) \
do { \
x = (c << norm); \
} while (0)
void n_pp1_print(mp_limb_t x, mp_limb_t y, ulong norm)
{
if (norm)
{
x >>= norm;
y >>= norm;
}
flint_printf("[%wu, %wu]", x, y);
}
#define n_pp1_2k(x, y, n, ninv, x0, norm) \
do { \
const mp_limb_t two = (UWORD(2) << norm); \
y = n_mulmod_preinv(y, x, n, ninv, norm); \
y = n_submod(y, x0, n); \
x = n_mulmod_preinv(x, x, n, ninv, norm); \
x = n_submod(x, two, n); \
} while (0)
#define n_pp1_2kp1(x, y, n, ninv, x0, norm) \
do { \
const mp_limb_t two = (UWORD(2) << norm); \
x = n_mulmod_preinv(x, y, n, ninv, norm); \
x = n_submod(x, x0, n); \
y = n_mulmod_preinv(y, y, n, ninv, norm); \
y = n_submod(y, two, n); \
} while (0)
void n_pp1_pow_ui(mp_limb_t * x, mp_limb_t * y, ulong exp,
mp_limb_t n, mp_limb_t ninv, ulong norm)
{
const mp_limb_t x0 = *x;
const mp_limb_t two = (UWORD(2) << norm);
ulong bit = ((UWORD(1) << FLINT_BIT_COUNT(exp)) >> 2);
(*y) = n_mulmod_preinv(*x, *x, n, ninv, norm);
(*y) = n_submod(*y, two, n);
while (bit)
{
if (exp & bit)
n_pp1_2kp1(*x, *y, n, ninv, x0, norm);
else
n_pp1_2k(*x, *y, n, ninv, x0, norm);
bit >>= 1;
}
}
mp_limb_t n_pp1_factor(mp_limb_t n, mp_limb_t x, ulong norm)
{
if (norm)
{
n >>= norm;
x >>= norm;
}
x = n_submod(x, 2, n);
if (x == 0)
return 0;
return n_gcd(n, x);
}
mp_limb_t n_pp1_find_power(mp_limb_t * x, mp_limb_t * y,
ulong p, mp_limb_t n, mp_limb_t ninv, ulong norm)
{
mp_limb_t factor;
do
{
n_pp1_pow_ui(x, y, p, n, ninv, norm);
factor = n_pp1_factor(n, *x, norm);
} while (factor == 1);
return factor;
}
mp_limb_t n_factor_pp1(mp_limb_t n, ulong B1, ulong c)
{
slong i, j;
mp_limb_t factor = 0;
mp_limb_t x, y = 0, oldx, oldy, ninv;
ulong pr, oldpr, sqrt, bits0, norm;
n_primes_t iter;
if ((n % 2) == 0)
return 2;
n_primes_init(iter);
sqrt = n_sqrt(B1);
bits0 = FLINT_BIT_COUNT(B1);
count_leading_zeros(norm, n);
n <<= norm;
ninv = n_preinvert_limb(n);
n_pp1_set_ui(x, norm, c);
/* mul by various prime powers */
pr = 0;
oldpr = 0;
for (i = 0; pr < B1; )
{
j = i + 1024;
oldpr = pr;
n_pp1_set(oldx, oldy, x, y);
for ( ; i < j; i++)
{
pr = n_primes_next(iter);
if (pr < sqrt)
{
ulong bits = FLINT_BIT_COUNT(pr);
ulong exp = bits0 / bits;
n_pp1_pow_ui(&x, &y, n_pow(pr, exp), n, ninv, norm);
} else
n_pp1_pow_ui(&x, &y, pr, n, ninv, norm);
}
factor = n_pp1_factor(n, x, norm);
if (factor == 0)
break;
if (factor != 1)
goto cleanup;
}
if (pr < B1) /* factor = 0 */
{
n_primes_jump_after(iter, oldpr);
n_pp1_set(x, y, oldx, oldy);
do
{
pr = n_primes_next(iter);
n_pp1_set(oldx, oldy, x, y);
if (pr < sqrt)
{
ulong bits = FLINT_BIT_COUNT(pr);
ulong exp = bits0 / bits;
n_pp1_pow_ui(&x, &y, n_pow(pr, exp), n, ninv, norm);
} else
n_pp1_pow_ui(&x, &y, pr, n, ninv, norm);
factor = n_pp1_factor(n, x, norm);
if (factor == 0)
break;
if (factor != 1)
goto cleanup;
} while (1);
} else
{
factor = 0;
goto cleanup;
}
/* factor still 0 */
factor = n_pp1_find_power(&oldx, &oldy, pr, n, ninv, norm);
cleanup:
n_primes_clear(iter);
return factor;
}
mp_limb_t n_factor_pp1_wrapper(mp_limb_t n)
{
slong bits = FLINT_BIT_COUNT(n);
ulong B1;
slong count, i;
flint_rand_t state;
/* silently fail if trial factoring would always succeed */
if (bits < 31)
return 0;
B1 = n_factor_pp1_table[bits - 31][1];
count = n_factor_pp1_table[bits - 31][2];
flint_randinit(state);
for (i = 0; i < count; i++)
{
ulong factor;
factor = n_factor_pp1(n, B1, n_randint(state, n - 3) + 3);
if (factor != 0)
{
flint_randclear(state);
return factor;
}
}
flint_randclear(state);
return 0;
}
/* exists only for tuning/profiling */
void n_factor_pp1_table_insert(slong bits, slong B1, slong count)
{
n_factor_pp1_table[bits][1] = B1;
n_factor_pp1_table[bits][2] = count;
}