/* Copyright (C) 2009 William Hart Copyright (C) 2014 Dana Jacobsen This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "ulong_extras.h" /* This function is used by n_is_prime up to 2^64 and *must* therefore act as a primality proof up to that limit. Currently it acts as such all the way up to 2^64. */ int n_is_probabprime(mp_limb_t n) { mp_limb_t d; unsigned int norm; int isprime; #if FLINT64 double npre; #else mp_limb_t ninv; #endif if (n <= UWORD(1)) return 0; if (n == UWORD(2)) return 1; if ((n & UWORD(1)) == 0) return 0; if (n < FLINT_ODDPRIME_SMALL_CUTOFF) return n_is_oddprime_small(n); if (n < FLINT_PRIMES_TAB_DEFAULT_CUTOFF) return n_is_oddprime_binary(n); #if FLINT64 /* Avoid the unnecessary inverse */ if (n >= UWORD(1050535501)) return n_is_probabprime_BPSW(n); #endif isprime = 0; d = n - 1; count_trailing_zeros(norm, d); d >>= norm; #if !FLINT64 /* For 32-bit, just the 2-base or 3-base Miller-Rabin is enough */ /* The preinv functions are faster on 32-bit, and work up to 2^32 (precomp only works up to 2^31) */ ninv = n_preinvert_limb(n); if (n < UWORD(9080191)) { isprime = n_is_strong_probabprime2_preinv(n, ninv, UWORD(31), d) && n_is_strong_probabprime2_preinv(n, ninv, UWORD(73), d); } else { isprime = n_is_strong_probabprime2_preinv(n, ninv, UWORD(2), d) && n_is_strong_probabprime2_preinv(n, ninv, UWORD(7), d) && n_is_strong_probabprime2_preinv(n, ninv, UWORD(61), d); } #else npre = n_precompute_inverse(n); /* For 64-bit, BPSW seems to be a little bit faster than 3 bases. */ if (n < UWORD(341531)) { isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(9345883071009581737), d); } else if (n < UWORD(1050535501)) { isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(336781006125), d) && n_is_strong_probabprime_precomp(n, npre, UWORD(9639812373923155), d); } #if 0 else if (n < UWORD(350269456337)) { isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(4230279247111683200), d) && n_is_strong_probabprime_precomp(n, npre, UWORD(14694767155120705706), d) && n_is_strong_probabprime_precomp(n, npre, UWORD(16641139526367750375), d); } #endif else { isprime = n_is_probabprime_BPSW(n); } #endif return isprime; }