/*
Copyright (C) 2009 William Hart
Copyright (C) 2014 Dana Jacobsen
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "ulong_extras.h"
/*
This function is used by n_is_prime up to 2^64 and *must* therefore
act as a primality proof up to that limit.
Currently it acts as such all the way up to 2^64.
*/
int n_is_probabprime(mp_limb_t n)
{
mp_limb_t d;
unsigned int norm;
int isprime;
#if FLINT64
double npre;
#else
mp_limb_t ninv;
#endif
if (n <= UWORD(1)) return 0;
if (n == UWORD(2)) return 1;
if ((n & UWORD(1)) == 0) return 0;
if (n < FLINT_ODDPRIME_SMALL_CUTOFF)
return n_is_oddprime_small(n);
if (n < FLINT_PRIMES_TAB_DEFAULT_CUTOFF)
return n_is_oddprime_binary(n);
#if FLINT64
/* Avoid the unnecessary inverse */
if (n >= UWORD(1050535501))
return n_is_probabprime_BPSW(n);
#endif
isprime = 0;
d = n - 1;
count_trailing_zeros(norm, d);
d >>= norm;
#if !FLINT64
/* For 32-bit, just the 2-base or 3-base Miller-Rabin is enough */
/* The preinv functions are faster on 32-bit, and work up to
2^32 (precomp only works up to 2^31) */
ninv = n_preinvert_limb(n);
if (n < UWORD(9080191))
{
isprime = n_is_strong_probabprime2_preinv(n, ninv, UWORD(31), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(73), d);
}
else
{
isprime = n_is_strong_probabprime2_preinv(n, ninv, UWORD(2), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(7), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(61), d);
}
#else
npre = n_precompute_inverse(n);
/* For 64-bit, BPSW seems to be a little bit faster than 3 bases. */
if (n < UWORD(341531))
{
isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(9345883071009581737), d);
}
else if (n < UWORD(1050535501))
{
isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(336781006125), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(9639812373923155), d);
}
#if 0
else if (n < UWORD(350269456337))
{
isprime = n_is_strong_probabprime_precomp(n, npre, UWORD(4230279247111683200), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(14694767155120705706), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(16641139526367750375), d);
}
#endif
else
{
isprime = n_is_probabprime_BPSW(n);
}
#endif
return isprime;
}