{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "ba535900-cffe-43fe-988a-72fefe2a9733", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import math" ] }, { "cell_type": "code", "execution_count": 2, "id": "4f0a2333-124e-4bef-a16c-fbf00eca80be", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "tensor([[-3.4585e+25, 4.5659e-41, -3.4585e+25, 4.5659e-41],\n", " [ 3.6434e-44, 3.3631e-43, 2.0607e-41, 2.1996e+03],\n", " [ 4.2324e+21, 1.9346e-19, 1.8912e+23, 2.0112e-19]])\n" ] } ], "source": [ "x = torch.empty(3, 4)\n", "print(type(x))\n", "print(x)" ] }, { "cell_type": "code", "execution_count": null, "id": "30a6363b-42b5-4051-95b2-c79a924f3ea5", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "research-env", "language": "python", "name": "research-env" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }