/* * Copyright (c) 2013-14 Mikko Mononen memon@inside.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * The SVG parser is based on Anti-Grain Geometry 2.4 SVG example * Copyright (C) 2002-2004 Maxim Shemanarev (McSeem) (http://www.antigrain.com/) * * Arc calculation code based on canvg (https://code.google.com/p/canvg/) * * Bounding box calculation based on http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html * */ #ifndef NANOSVG_H #define NANOSVG_H #ifndef NANOSVG_CPLUSPLUS #ifdef __cplusplus extern "C" { #endif #endif // NanoSVG is a simple stupid single-header-file SVG parse. The output of the parser is a list of cubic bezier shapes. // // The library suits well for anything from rendering scalable icons in your editor application to prototyping a game. // // NanoSVG supports a wide range of SVG features, but something may be missing, feel free to create a pull request! // // The shapes in the SVG images are transformed by the viewBox and converted to specified units. // That is, you should get the same looking data as your designed in your favorite app. // // NanoSVG can return the paths in few different units. For example if you want to render an image, you may choose // to get the paths in pixels, or if you are feeding the data into a CNC-cutter, you may want to use millimeters. // // The units passed to NanoSVG should be one of: 'px', 'pt', 'pc' 'mm', 'cm', or 'in'. // DPI (dots-per-inch) controls how the unit conversion is done. // // If you don't know or care about the units stuff, "px" and 96 should get you going. /* Example Usage: // Load SVG NSVGimage* image; image = nsvgParseFromFile("test.svg", "px", 96); printf("size: %f x %f\n", image->width, image->height); // Use... for (NSVGshape *shape = image->shapes; shape != NULL; shape = shape->next) { for (NSVGpath *path = shape->paths; path != NULL; path = path->next) { for (int i = 0; i < path->npts-1; i += 3) { float* p = &path->pts[i*2]; drawCubicBez(p[0],p[1], p[2],p[3], p[4],p[5], p[6],p[7]); } } } // Delete nsvgDelete(image); */ enum NSVGpaintType { NSVG_PAINT_NONE = 0, NSVG_PAINT_COLOR = 1, NSVG_PAINT_LINEAR_GRADIENT = 2, NSVG_PAINT_RADIAL_GRADIENT = 3 }; enum NSVGspreadType { NSVG_SPREAD_PAD = 0, NSVG_SPREAD_REFLECT = 1, NSVG_SPREAD_REPEAT = 2 }; enum NSVGlineJoin { NSVG_JOIN_MITER = 0, NSVG_JOIN_ROUND = 1, NSVG_JOIN_BEVEL = 2 }; enum NSVGlineCap { NSVG_CAP_BUTT = 0, NSVG_CAP_ROUND = 1, NSVG_CAP_SQUARE = 2 }; enum NSVGfillRule { NSVG_FILLRULE_NONZERO = 0, NSVG_FILLRULE_EVENODD = 1 }; enum NSVGflags { NSVG_FLAGS_VISIBLE = 0x01 }; typedef struct NSVGgradientStop { unsigned int color; float offset; } NSVGgradientStop; typedef struct NSVGgradient { float xform[6]; char spread; float fx, fy; int nstops; NSVGgradientStop stops[1]; } NSVGgradient; typedef struct NSVGpaint { char type; union { unsigned int color; NSVGgradient* gradient; }; } NSVGpaint; typedef struct NSVGpath { float* pts; // Cubic bezier points: x0,y0, [cpx1,cpx1,cpx2,cpy2,x1,y1], ... int npts; // Total number of bezier points. char closed; // Flag indicating if shapes should be treated as closed. float bounds[4]; // Tight bounding box of the shape [minx,miny,maxx,maxy]. struct NSVGpath* next; // Pointer to next path, or NULL if last element. } NSVGpath; typedef struct NSVGshape { char id[64]; // Optional 'id' attr of the shape or its group NSVGpaint fill; // Fill paint NSVGpaint stroke; // Stroke paint float opacity; // Opacity of the shape. float strokeWidth; // Stroke width (scaled). float strokeDashOffset; // Stroke dash offset (scaled). float strokeDashArray[8]; // Stroke dash array (scaled). char strokeDashCount; // Number of dash values in dash array. char strokeLineJoin; // Stroke join type. char strokeLineCap; // Stroke cap type. float miterLimit; // Miter limit char fillRule; // Fill rule, see NSVGfillRule. unsigned char flags; // Logical or of NSVG_FLAGS_* flags float bounds[4]; // Tight bounding box of the shape [minx,miny,maxx,maxy]. NSVGpath* paths; // Linked list of paths in the image. struct NSVGshape* next; // Pointer to next shape, or NULL if last element. } NSVGshape; typedef struct NSVGimage { float width; // Width of the image. float height; // Height of the image. NSVGshape* shapes; // Linked list of shapes in the image. } NSVGimage; // Parses SVG file from a file, returns SVG image as paths. NSVGimage* nsvgParseFromFile(const char* filename, const char* units, float dpi); // Parses SVG file from a null terminated string, returns SVG image as paths. // Important note: changes the string. NSVGimage* nsvgParse(char* input, const char* units, float dpi); // Duplicates a path. NSVGpath* nsvgDuplicatePath(NSVGpath* p); // Deletes an image. void nsvgDelete(NSVGimage* image); #ifndef NANOSVG_CPLUSPLUS #ifdef __cplusplus } #endif #endif #ifdef NANOSVG_IMPLEMENTATION #include #include #include #include #define NSVG_PI (3.14159265358979323846264338327f) #define NSVG_KAPPA90 (0.5522847493f) // Length proportional to radius of a cubic bezier handle for 90deg arcs. #define NSVG_ALIGN_MIN 0 #define NSVG_ALIGN_MID 1 #define NSVG_ALIGN_MAX 2 #define NSVG_ALIGN_NONE 0 #define NSVG_ALIGN_MEET 1 #define NSVG_ALIGN_SLICE 2 #define NSVG_NOTUSED(v) do { (void)(1 ? (void)0 : ( (void)(v) ) ); } while(0) #define NSVG_RGB(r, g, b) (((unsigned int)r) | ((unsigned int)g << 8) | ((unsigned int)b << 16)) #ifdef _MSC_VER #pragma warning (disable: 4996) // Switch off security warnings #pragma warning (disable: 4100) // Switch off unreferenced formal parameter warnings #ifdef __cplusplus #define NSVG_INLINE inline #else #define NSVG_INLINE #endif #else #define NSVG_INLINE inline #endif static int nsvg__isspace(char c) { return strchr(" \t\n\v\f\r", c) != 0; } static int nsvg__isdigit(char c) { return c >= '0' && c <= '9'; } static NSVG_INLINE float nsvg__minf(float a, float b) { return a < b ? a : b; } static NSVG_INLINE float nsvg__maxf(float a, float b) { return a > b ? a : b; } // Simple XML parser #define NSVG_XML_TAG 1 #define NSVG_XML_CONTENT 2 #define NSVG_XML_MAX_ATTRIBS 256 static void nsvg__parseContent(char* s, void (*contentCb)(void* ud, const char* s), void* ud) { // Trim start white spaces while (*s && nsvg__isspace(*s)) s++; if (!*s) return; if (contentCb) (*contentCb)(ud, s); } static void nsvg__parseElement(char* s, void (*startelCb)(void* ud, const char* el, const char** attr), void (*endelCb)(void* ud, const char* el), void* ud) { const char* attr[NSVG_XML_MAX_ATTRIBS]; int nattr = 0; char* name; int start = 0; int end = 0; char quote; // Skip white space after the '<' while (*s && nsvg__isspace(*s)) s++; // Check if the tag is end tag if (*s == '/') { s++; end = 1; } else { start = 1; } // Skip comments, data and preprocessor stuff. if (!*s || *s == '?' || *s == '!') return; // Get tag name name = s; while (*s && !nsvg__isspace(*s)) s++; if (*s) { *s++ = '\0'; } // Get attribs while (!end && *s && nattr < NSVG_XML_MAX_ATTRIBS-3) { char* name = NULL; char* value = NULL; // Skip white space before the attrib name while (*s && nsvg__isspace(*s)) s++; if (!*s) break; if (*s == '/') { end = 1; break; } name = s; // Find end of the attrib name. while (*s && !nsvg__isspace(*s) && *s != '=') s++; if (*s) { *s++ = '\0'; } // Skip until the beginning of the value. while (*s && *s != '\"' && *s != '\'') s++; if (!*s) break; quote = *s; s++; // Store value and find the end of it. value = s; while (*s && *s != quote) s++; if (*s) { *s++ = '\0'; } // Store only well formed attributes if (name && value) { attr[nattr++] = name; attr[nattr++] = value; } } // List terminator attr[nattr++] = 0; attr[nattr++] = 0; // Call callbacks. if (start && startelCb) (*startelCb)(ud, name, attr); if (end && endelCb) (*endelCb)(ud, name); } int nsvg__parseXML(char* input, void (*startelCb)(void* ud, const char* el, const char** attr), void (*endelCb)(void* ud, const char* el), void (*contentCb)(void* ud, const char* s), void* ud) { char* s = input; char* mark = s; int state = NSVG_XML_CONTENT; while (*s) { if (*s == '<' && state == NSVG_XML_CONTENT) { // Start of a tag *s++ = '\0'; nsvg__parseContent(mark, contentCb, ud); mark = s; state = NSVG_XML_TAG; } else if (*s == '>' && state == NSVG_XML_TAG) { // Start of a content or new tag. *s++ = '\0'; nsvg__parseElement(mark, startelCb, endelCb, ud); mark = s; state = NSVG_XML_CONTENT; } else { s++; } } return 1; } /* Simple SVG parser. */ #define NSVG_MAX_ATTR 128 enum NSVGgradientUnits { NSVG_USER_SPACE = 0, NSVG_OBJECT_SPACE = 1 }; #define NSVG_MAX_DASHES 8 enum NSVGunits { NSVG_UNITS_USER, NSVG_UNITS_PX, NSVG_UNITS_PT, NSVG_UNITS_PC, NSVG_UNITS_MM, NSVG_UNITS_CM, NSVG_UNITS_IN, NSVG_UNITS_PERCENT, NSVG_UNITS_EM, NSVG_UNITS_EX }; typedef struct NSVGcoordinate { float value; int units; } NSVGcoordinate; typedef struct NSVGlinearData { NSVGcoordinate x1, y1, x2, y2; } NSVGlinearData; typedef struct NSVGradialData { NSVGcoordinate cx, cy, r, fx, fy; } NSVGradialData; typedef struct NSVGgradientData { char id[64]; char ref[64]; char type; union { NSVGlinearData linear; NSVGradialData radial; }; char spread; char units; float xform[6]; int nstops; NSVGgradientStop* stops; struct NSVGgradientData* next; } NSVGgradientData; typedef struct NSVGattrib { char id[64]; float xform[6]; unsigned int fillColor; unsigned int strokeColor; float opacity; float fillOpacity; float strokeOpacity; char fillGradient[64]; char strokeGradient[64]; float strokeWidth; float strokeDashOffset; float strokeDashArray[NSVG_MAX_DASHES]; int strokeDashCount; char strokeLineJoin; char strokeLineCap; float miterLimit; char fillRule; float fontSize; unsigned int stopColor; float stopOpacity; float stopOffset; char hasFill; char hasStroke; char visible; } NSVGattrib; typedef struct NSVGparser { NSVGattrib attr[NSVG_MAX_ATTR]; int attrHead; float* pts; int npts; int cpts; NSVGpath* plist; NSVGimage* image; NSVGgradientData* gradients; NSVGshape* shapesTail; float viewMinx, viewMiny, viewWidth, viewHeight; int alignX, alignY, alignType; float dpi; char pathFlag; char defsFlag; } NSVGparser; static void nsvg__xformIdentity(float* t) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } static void nsvg__xformSetTranslation(float* t, float tx, float ty) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = tx; t[5] = ty; } static void nsvg__xformSetScale(float* t, float sx, float sy) { t[0] = sx; t[1] = 0.0f; t[2] = 0.0f; t[3] = sy; t[4] = 0.0f; t[5] = 0.0f; } static void nsvg__xformSetSkewX(float* t, float a) { t[0] = 1.0f; t[1] = 0.0f; t[2] = tanf(a); t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } static void nsvg__xformSetSkewY(float* t, float a) { t[0] = 1.0f; t[1] = tanf(a); t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } static void nsvg__xformSetRotation(float* t, float a) { float cs = cosf(a), sn = sinf(a); t[0] = cs; t[1] = sn; t[2] = -sn; t[3] = cs; t[4] = 0.0f; t[5] = 0.0f; } static void nsvg__xformMultiply(float* t, float* s) { float t0 = t[0] * s[0] + t[1] * s[2]; float t2 = t[2] * s[0] + t[3] * s[2]; float t4 = t[4] * s[0] + t[5] * s[2] + s[4]; t[1] = t[0] * s[1] + t[1] * s[3]; t[3] = t[2] * s[1] + t[3] * s[3]; t[5] = t[4] * s[1] + t[5] * s[3] + s[5]; t[0] = t0; t[2] = t2; t[4] = t4; } static void nsvg__xformInverse(float* inv, float* t) { double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; if (det > -1e-6 && det < 1e-6) { nsvg__xformIdentity(t); return; } invdet = 1.0 / det; inv[0] = (float)(t[3] * invdet); inv[2] = (float)(-t[2] * invdet); inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); inv[1] = (float)(-t[1] * invdet); inv[3] = (float)(t[0] * invdet); inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); } static void nsvg__xformPremultiply(float* t, float* s) { float s2[6]; memcpy(s2, s, sizeof(float)*6); nsvg__xformMultiply(s2, t); memcpy(t, s2, sizeof(float)*6); } static void nsvg__xformPoint(float* dx, float* dy, float x, float y, float* t) { *dx = x*t[0] + y*t[2] + t[4]; *dy = x*t[1] + y*t[3] + t[5]; } static void nsvg__xformVec(float* dx, float* dy, float x, float y, float* t) { *dx = x*t[0] + y*t[2]; *dy = x*t[1] + y*t[3]; } #define NSVG_EPSILON (1e-12) static int nsvg__ptInBounds(float* pt, float* bounds) { return pt[0] >= bounds[0] && pt[0] <= bounds[2] && pt[1] >= bounds[1] && pt[1] <= bounds[3]; } static double nsvg__evalBezier(double t, double p0, double p1, double p2, double p3) { double it = 1.0-t; return it*it*it*p0 + 3.0*it*it*t*p1 + 3.0*it*t*t*p2 + t*t*t*p3; } static void nsvg__curveBounds(float* bounds, float* curve) { int i, j, count; double roots[2], a, b, c, b2ac, t, v; float* v0 = &curve[0]; float* v1 = &curve[2]; float* v2 = &curve[4]; float* v3 = &curve[6]; // Start the bounding box by end points bounds[0] = nsvg__minf(v0[0], v3[0]); bounds[1] = nsvg__minf(v0[1], v3[1]); bounds[2] = nsvg__maxf(v0[0], v3[0]); bounds[3] = nsvg__maxf(v0[1], v3[1]); // Bezier curve fits inside the convex hull of it's control points. // If control points are inside the bounds, we're done. if (nsvg__ptInBounds(v1, bounds) && nsvg__ptInBounds(v2, bounds)) return; // Add bezier curve inflection points in X and Y. for (i = 0; i < 2; i++) { a = -3.0 * v0[i] + 9.0 * v1[i] - 9.0 * v2[i] + 3.0 * v3[i]; b = 6.0 * v0[i] - 12.0 * v1[i] + 6.0 * v2[i]; c = 3.0 * v1[i] - 3.0 * v0[i]; count = 0; if (fabs(a) < NSVG_EPSILON) { if (fabs(b) > NSVG_EPSILON) { t = -c / b; if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON) roots[count++] = t; } } else { b2ac = b*b - 4.0*c*a; if (b2ac > NSVG_EPSILON) { t = (-b + sqrt(b2ac)) / (2.0 * a); if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON) roots[count++] = t; t = (-b - sqrt(b2ac)) / (2.0 * a); if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON) roots[count++] = t; } } for (j = 0; j < count; j++) { v = nsvg__evalBezier(roots[j], v0[i], v1[i], v2[i], v3[i]); bounds[0+i] = nsvg__minf(bounds[0+i], (float)v); bounds[2+i] = nsvg__maxf(bounds[2+i], (float)v); } } } static NSVGparser* nsvg__createParser() { NSVGparser* p; p = (NSVGparser*)malloc(sizeof(NSVGparser)); if (p == NULL) goto error; memset(p, 0, sizeof(NSVGparser)); p->image = (NSVGimage*)malloc(sizeof(NSVGimage)); if (p->image == NULL) goto error; memset(p->image, 0, sizeof(NSVGimage)); // Init style nsvg__xformIdentity(p->attr[0].xform); memset(p->attr[0].id, 0, sizeof p->attr[0].id); p->attr[0].fillColor = NSVG_RGB(0,0,0); p->attr[0].strokeColor = NSVG_RGB(0,0,0); p->attr[0].opacity = 1; p->attr[0].fillOpacity = 1; p->attr[0].strokeOpacity = 1; p->attr[0].stopOpacity = 1; p->attr[0].strokeWidth = 1; p->attr[0].strokeLineJoin = NSVG_JOIN_MITER; p->attr[0].strokeLineCap = NSVG_CAP_BUTT; p->attr[0].miterLimit = 4; p->attr[0].fillRule = NSVG_FILLRULE_NONZERO; p->attr[0].hasFill = 1; p->attr[0].visible = 1; return p; error: if (p) { if (p->image) free(p->image); free(p); } return NULL; } static void nsvg__deletePaths(NSVGpath* path) { while (path) { NSVGpath *next = path->next; if (path->pts != NULL) free(path->pts); free(path); path = next; } } static void nsvg__deletePaint(NSVGpaint* paint) { if (paint->type == NSVG_PAINT_LINEAR_GRADIENT || paint->type == NSVG_PAINT_RADIAL_GRADIENT) free(paint->gradient); } static void nsvg__deleteGradientData(NSVGgradientData* grad) { NSVGgradientData* next; while (grad != NULL) { next = grad->next; free(grad->stops); free(grad); grad = next; } } static void nsvg__deleteParser(NSVGparser* p) { if (p != NULL) { nsvg__deletePaths(p->plist); nsvg__deleteGradientData(p->gradients); nsvgDelete(p->image); free(p->pts); free(p); } } static void nsvg__resetPath(NSVGparser* p) { p->npts = 0; } static void nsvg__addPoint(NSVGparser* p, float x, float y) { if (p->npts+1 > p->cpts) { p->cpts = p->cpts ? p->cpts*2 : 8; p->pts = (float*)realloc(p->pts, p->cpts*2*sizeof(float)); if (!p->pts) return; } p->pts[p->npts*2+0] = x; p->pts[p->npts*2+1] = y; p->npts++; } static void nsvg__moveTo(NSVGparser* p, float x, float y) { if (p->npts > 0) { p->pts[(p->npts-1)*2+0] = x; p->pts[(p->npts-1)*2+1] = y; } else { nsvg__addPoint(p, x, y); } } static void nsvg__lineTo(NSVGparser* p, float x, float y) { float px,py, dx,dy; if (p->npts > 0) { px = p->pts[(p->npts-1)*2+0]; py = p->pts[(p->npts-1)*2+1]; dx = x - px; dy = y - py; nsvg__addPoint(p, px + dx/3.0f, py + dy/3.0f); nsvg__addPoint(p, x - dx/3.0f, y - dy/3.0f); nsvg__addPoint(p, x, y); } } static void nsvg__cubicBezTo(NSVGparser* p, float cpx1, float cpy1, float cpx2, float cpy2, float x, float y) { if (p->npts > 0) { nsvg__addPoint(p, cpx1, cpy1); nsvg__addPoint(p, cpx2, cpy2); nsvg__addPoint(p, x, y); } } static NSVGattrib* nsvg__getAttr(NSVGparser* p) { return &p->attr[p->attrHead]; } static void nsvg__pushAttr(NSVGparser* p) { if (p->attrHead < NSVG_MAX_ATTR-1) { p->attrHead++; memcpy(&p->attr[p->attrHead], &p->attr[p->attrHead-1], sizeof(NSVGattrib)); } } static void nsvg__popAttr(NSVGparser* p) { if (p->attrHead > 0) p->attrHead--; } static float nsvg__actualOrigX(NSVGparser* p) { return p->viewMinx; } static float nsvg__actualOrigY(NSVGparser* p) { return p->viewMiny; } static float nsvg__actualWidth(NSVGparser* p) { return p->viewWidth; } static float nsvg__actualHeight(NSVGparser* p) { return p->viewHeight; } static float nsvg__actualLength(NSVGparser* p) { float w = nsvg__actualWidth(p), h = nsvg__actualHeight(p); return sqrtf(w*w + h*h) / sqrtf(2.0f); } static float nsvg__convertToPixels(NSVGparser* p, NSVGcoordinate c, float orig, float length) { NSVGattrib* attr = nsvg__getAttr(p); switch (c.units) { case NSVG_UNITS_USER: return c.value; case NSVG_UNITS_PX: return c.value; case NSVG_UNITS_PT: return c.value / 72.0f * p->dpi; case NSVG_UNITS_PC: return c.value / 6.0f * p->dpi; case NSVG_UNITS_MM: return c.value / 25.4f * p->dpi; case NSVG_UNITS_CM: return c.value / 2.54f * p->dpi; case NSVG_UNITS_IN: return c.value * p->dpi; case NSVG_UNITS_EM: return c.value * attr->fontSize; case NSVG_UNITS_EX: return c.value * attr->fontSize * 0.52f; // x-height of Helvetica. case NSVG_UNITS_PERCENT: return orig + c.value / 100.0f * length; default: return c.value; } return c.value; } static NSVGgradientData* nsvg__findGradientData(NSVGparser* p, const char* id) { NSVGgradientData* grad = p->gradients; if (id == NULL || *id == '\0') return NULL; while (grad != NULL) { if (strcmp(grad->id, id) == 0) return grad; grad = grad->next; } return NULL; } static NSVGgradient* nsvg__createGradient(NSVGparser* p, const char* id, const float* localBounds, char* paintType) { NSVGattrib* attr = nsvg__getAttr(p); NSVGgradientData* data = NULL; NSVGgradientData* ref = NULL; NSVGgradientStop* stops = NULL; NSVGgradient* grad; float ox, oy, sw, sh, sl; int nstops = 0; int refIter; data = nsvg__findGradientData(p, id); if (data == NULL) return NULL; // TODO: use ref to fill in all unset values too. ref = data; refIter = 0; while (ref != NULL) { NSVGgradientData* nextRef = NULL; if (stops == NULL && ref->stops != NULL) { stops = ref->stops; nstops = ref->nstops; break; } nextRef = nsvg__findGradientData(p, ref->ref); if (nextRef == ref) break; // prevent infite loops on malformed data ref = nextRef; refIter++; if (refIter > 32) break; // prevent infite loops on malformed data } if (stops == NULL) return NULL; grad = (NSVGgradient*)malloc(sizeof(NSVGgradient) + sizeof(NSVGgradientStop)*(nstops-1)); if (grad == NULL) return NULL; // The shape width and height. if (data->units == NSVG_OBJECT_SPACE) { ox = localBounds[0]; oy = localBounds[1]; sw = localBounds[2] - localBounds[0]; sh = localBounds[3] - localBounds[1]; } else { ox = nsvg__actualOrigX(p); oy = nsvg__actualOrigY(p); sw = nsvg__actualWidth(p); sh = nsvg__actualHeight(p); } sl = sqrtf(sw*sw + sh*sh) / sqrtf(2.0f); if (data->type == NSVG_PAINT_LINEAR_GRADIENT) { float x1, y1, x2, y2, dx, dy; x1 = nsvg__convertToPixels(p, data->linear.x1, ox, sw); y1 = nsvg__convertToPixels(p, data->linear.y1, oy, sh); x2 = nsvg__convertToPixels(p, data->linear.x2, ox, sw); y2 = nsvg__convertToPixels(p, data->linear.y2, oy, sh); // Calculate transform aligned to the line dx = x2 - x1; dy = y2 - y1; grad->xform[0] = dy; grad->xform[1] = -dx; grad->xform[2] = dx; grad->xform[3] = dy; grad->xform[4] = x1; grad->xform[5] = y1; } else { float cx, cy, fx, fy, r; cx = nsvg__convertToPixels(p, data->radial.cx, ox, sw); cy = nsvg__convertToPixels(p, data->radial.cy, oy, sh); fx = nsvg__convertToPixels(p, data->radial.fx, ox, sw); fy = nsvg__convertToPixels(p, data->radial.fy, oy, sh); r = nsvg__convertToPixels(p, data->radial.r, 0, sl); // Calculate transform aligned to the circle grad->xform[0] = r; grad->xform[1] = 0; grad->xform[2] = 0; grad->xform[3] = r; grad->xform[4] = cx; grad->xform[5] = cy; grad->fx = fx / r; grad->fy = fy / r; } nsvg__xformMultiply(grad->xform, data->xform); nsvg__xformMultiply(grad->xform, attr->xform); grad->spread = data->spread; memcpy(grad->stops, stops, nstops*sizeof(NSVGgradientStop)); grad->nstops = nstops; *paintType = data->type; return grad; } static float nsvg__getAverageScale(float* t) { float sx = sqrtf(t[0]*t[0] + t[2]*t[2]); float sy = sqrtf(t[1]*t[1] + t[3]*t[3]); return (sx + sy) * 0.5f; } static void nsvg__getLocalBounds(float* bounds, NSVGshape *shape, float* xform) { NSVGpath* path; float curve[4*2], curveBounds[4]; int i, first = 1; for (path = shape->paths; path != NULL; path = path->next) { nsvg__xformPoint(&curve[0], &curve[1], path->pts[0], path->pts[1], xform); for (i = 0; i < path->npts-1; i += 3) { nsvg__xformPoint(&curve[2], &curve[3], path->pts[(i+1)*2], path->pts[(i+1)*2+1], xform); nsvg__xformPoint(&curve[4], &curve[5], path->pts[(i+2)*2], path->pts[(i+2)*2+1], xform); nsvg__xformPoint(&curve[6], &curve[7], path->pts[(i+3)*2], path->pts[(i+3)*2+1], xform); nsvg__curveBounds(curveBounds, curve); if (first) { bounds[0] = curveBounds[0]; bounds[1] = curveBounds[1]; bounds[2] = curveBounds[2]; bounds[3] = curveBounds[3]; first = 0; } else { bounds[0] = nsvg__minf(bounds[0], curveBounds[0]); bounds[1] = nsvg__minf(bounds[1], curveBounds[1]); bounds[2] = nsvg__maxf(bounds[2], curveBounds[2]); bounds[3] = nsvg__maxf(bounds[3], curveBounds[3]); } curve[0] = curve[6]; curve[1] = curve[7]; } } } static void nsvg__addShape(NSVGparser* p) { NSVGattrib* attr = nsvg__getAttr(p); float scale = 1.0f; NSVGshape* shape; NSVGpath* path; int i; if (p->plist == NULL) return; shape = (NSVGshape*)malloc(sizeof(NSVGshape)); if (shape == NULL) goto error; memset(shape, 0, sizeof(NSVGshape)); memcpy(shape->id, attr->id, sizeof shape->id); scale = nsvg__getAverageScale(attr->xform); shape->strokeWidth = attr->strokeWidth * scale; shape->strokeDashOffset = attr->strokeDashOffset * scale; shape->strokeDashCount = (char)attr->strokeDashCount; for (i = 0; i < attr->strokeDashCount; i++) shape->strokeDashArray[i] = attr->strokeDashArray[i] * scale; shape->strokeLineJoin = attr->strokeLineJoin; shape->strokeLineCap = attr->strokeLineCap; shape->miterLimit = attr->miterLimit; shape->fillRule = attr->fillRule; shape->opacity = attr->opacity; shape->paths = p->plist; p->plist = NULL; // Calculate shape bounds shape->bounds[0] = shape->paths->bounds[0]; shape->bounds[1] = shape->paths->bounds[1]; shape->bounds[2] = shape->paths->bounds[2]; shape->bounds[3] = shape->paths->bounds[3]; for (path = shape->paths->next; path != NULL; path = path->next) { shape->bounds[0] = nsvg__minf(shape->bounds[0], path->bounds[0]); shape->bounds[1] = nsvg__minf(shape->bounds[1], path->bounds[1]); shape->bounds[2] = nsvg__maxf(shape->bounds[2], path->bounds[2]); shape->bounds[3] = nsvg__maxf(shape->bounds[3], path->bounds[3]); } // Set fill if (attr->hasFill == 0) { shape->fill.type = NSVG_PAINT_NONE; } else if (attr->hasFill == 1) { shape->fill.type = NSVG_PAINT_COLOR; shape->fill.color = attr->fillColor; shape->fill.color |= (unsigned int)(attr->fillOpacity*255) << 24; } else if (attr->hasFill == 2) { float inv[6], localBounds[4]; nsvg__xformInverse(inv, attr->xform); nsvg__getLocalBounds(localBounds, shape, inv); shape->fill.gradient = nsvg__createGradient(p, attr->fillGradient, localBounds, &shape->fill.type); if (shape->fill.gradient == NULL) { shape->fill.type = NSVG_PAINT_NONE; } } // Set stroke if (attr->hasStroke == 0) { shape->stroke.type = NSVG_PAINT_NONE; } else if (attr->hasStroke == 1) { shape->stroke.type = NSVG_PAINT_COLOR; shape->stroke.color = attr->strokeColor; shape->stroke.color |= (unsigned int)(attr->strokeOpacity*255) << 24; } else if (attr->hasStroke == 2) { float inv[6], localBounds[4]; nsvg__xformInverse(inv, attr->xform); nsvg__getLocalBounds(localBounds, shape, inv); shape->stroke.gradient = nsvg__createGradient(p, attr->strokeGradient, localBounds, &shape->stroke.type); if (shape->stroke.gradient == NULL) shape->stroke.type = NSVG_PAINT_NONE; } // Set flags shape->flags = (attr->visible ? NSVG_FLAGS_VISIBLE : 0x00); // Add to tail if (p->image->shapes == NULL) p->image->shapes = shape; else p->shapesTail->next = shape; p->shapesTail = shape; return; error: if (shape) free(shape); } static void nsvg__addPath(NSVGparser* p, char closed) { NSVGattrib* attr = nsvg__getAttr(p); NSVGpath* path = NULL; float bounds[4]; float* curve; int i; if (p->npts < 4) return; if (closed) nsvg__lineTo(p, p->pts[0], p->pts[1]); // Expect 1 + N*3 points (N = number of cubic bezier segments). if ((p->npts % 3) != 1) return; path = (NSVGpath*)malloc(sizeof(NSVGpath)); if (path == NULL) goto error; memset(path, 0, sizeof(NSVGpath)); path->pts = (float*)malloc(p->npts*2*sizeof(float)); if (path->pts == NULL) goto error; path->closed = closed; path->npts = p->npts; // Transform path. for (i = 0; i < p->npts; ++i) nsvg__xformPoint(&path->pts[i*2], &path->pts[i*2+1], p->pts[i*2], p->pts[i*2+1], attr->xform); // Find bounds for (i = 0; i < path->npts-1; i += 3) { curve = &path->pts[i*2]; nsvg__curveBounds(bounds, curve); if (i == 0) { path->bounds[0] = bounds[0]; path->bounds[1] = bounds[1]; path->bounds[2] = bounds[2]; path->bounds[3] = bounds[3]; } else { path->bounds[0] = nsvg__minf(path->bounds[0], bounds[0]); path->bounds[1] = nsvg__minf(path->bounds[1], bounds[1]); path->bounds[2] = nsvg__maxf(path->bounds[2], bounds[2]); path->bounds[3] = nsvg__maxf(path->bounds[3], bounds[3]); } } path->next = p->plist; p->plist = path; return; error: if (path != NULL) { if (path->pts != NULL) free(path->pts); free(path); } } // We roll our own string to float because the std library one uses locale and messes things up. static double nsvg__atof(const char* s) { char* cur = (char*)s; char* end = NULL; double res = 0.0, sign = 1.0; double intPart = 0.0, fracPart = 0.0; char hasIntPart = 0, hasFracPart = 0; // Parse optional sign if (*cur == '+') { cur++; } else if (*cur == '-') { sign = -1; cur++; } // Parse integer part if (nsvg__isdigit(*cur)) { // Parse digit sequence #ifdef _MSC_VER intPart = (double)_strtoi64(cur, &end, 10); #else intPart = (double)strtoll(cur, &end, 10); #endif if (cur != end) { res = intPart; hasIntPart = 1; cur = end; } } // Parse fractional part. if (*cur == '.') { cur++; // Skip '.' if (nsvg__isdigit(*cur)) { // Parse digit sequence #ifdef _MSC_VER fracPart = (double)_strtoi64(cur, &end, 10); #else fracPart = (double)strtoll(cur, &end, 10); #endif if (cur != end) { res += fracPart / pow(10.0, (double)(end - cur)); hasFracPart = 1; cur = end; } } } // A valid number should have integer or fractional part. if (!hasIntPart && !hasFracPart) return 0.0; // Parse optional exponent if (*cur == 'e' || *cur == 'E') { double expPart = 0.0; cur++; // skip 'E' expPart = (double)strtol(cur, &end, 10); // Parse digit sequence with sign if (cur != end) { res *= pow(10.0, expPart); } } return res * sign; } static const char* nsvg__parseNumber(const char* s, char* it, const int size) { const int last = size-1; int i = 0; // sign if (*s == '-' || *s == '+') { if (i < last) it[i++] = *s; s++; } // integer part while (*s && nsvg__isdigit(*s)) { if (i < last) it[i++] = *s; s++; } if (*s == '.') { // decimal point if (i < last) it[i++] = *s; s++; // fraction part while (*s && nsvg__isdigit(*s)) { if (i < last) it[i++] = *s; s++; } } // exponent if ((*s == 'e' || *s == 'E') && (s[1] != 'm' && s[1] != 'x')) { if (i < last) it[i++] = *s; s++; if (*s == '-' || *s == '+') { if (i < last) it[i++] = *s; s++; } while (*s && nsvg__isdigit(*s)) { if (i < last) it[i++] = *s; s++; } } it[i] = '\0'; return s; } static const char* nsvg__getNextPathItem(const char* s, char* it) { it[0] = '\0'; // Skip white spaces and commas while (*s && (nsvg__isspace(*s) || *s == ',')) s++; if (!*s) return s; if (*s == '-' || *s == '+' || *s == '.' || nsvg__isdigit(*s)) { s = nsvg__parseNumber(s, it, 64); } else { // Parse command it[0] = *s++; it[1] = '\0'; return s; } return s; } static unsigned int nsvg__parseColorHex(const char* str) { unsigned int r=0, g=0, b=0; if (sscanf(str, "#%2x%2x%2x", &r, &g, &b) == 3 ) // 2 digit hex return NSVG_RGB(r, g, b); if (sscanf(str, "#%1x%1x%1x", &r, &g, &b) == 3 ) // 1 digit hex, e.g. #abc -> 0xccbbaa return NSVG_RGB(r*17, g*17, b*17); // same effect as (r<<4|r), (g<<4|g), .. return NSVG_RGB(128, 128, 128); } // Parse rgb color. The pointer 'str' must point at "rgb(" (4+ characters). // This function returns gray (rgb(128, 128, 128) == '#808080') on parse errors // for backwards compatibility. Note: other image viewers return black instead. static unsigned int nsvg__parseColorRGB(const char* str) { int i; unsigned int rgbi[3]; float rgbf[3]; // try decimal integers first if (sscanf(str, "rgb(%u, %u, %u)", &rgbi[0], &rgbi[1], &rgbi[2]) != 3) { // integers failed, try percent values (float, locale independent) const char delimiter[3] = {',', ',', ')'}; str += 4; // skip "rgb(" for (i = 0; i < 3; i++) { while (*str && (nsvg__isspace(*str))) str++; // skip leading spaces if (*str == '+') str++; // skip '+' (don't allow '-') if (!*str) break; rgbf[i] = nsvg__atof(str); // Note 1: it would be great if nsvg__atof() returned how many // bytes it consumed but it doesn't. We need to skip the number, // the '%' character, spaces, and the delimiter ',' or ')'. // Note 2: The following code does not allow values like "33.%", // i.e. a decimal point w/o fractional part, but this is consistent // with other image viewers, e.g. firefox, chrome, eog, gimp. while (*str && nsvg__isdigit(*str)) str++; // skip integer part if (*str == '.') { str++; if (!nsvg__isdigit(*str)) break; // error: no digit after '.' while (*str && nsvg__isdigit(*str)) str++; // skip fractional part } if (*str == '%') str++; else break; while (nsvg__isspace(*str)) str++; if (*str == delimiter[i]) str++; else break; } if (i == 3) { rgbi[0] = roundf(rgbf[0] * 2.55f); rgbi[1] = roundf(rgbf[1] * 2.55f); rgbi[2] = roundf(rgbf[2] * 2.55f); } else { rgbi[0] = rgbi[1] = rgbi[2] = 128; } } // clip values as the CSS spec requires for (i = 0; i < 3; i++) { if (rgbi[i] > 255) rgbi[i] = 255; } return NSVG_RGB(rgbi[0], rgbi[1], rgbi[2]); } typedef struct NSVGNamedColor { const char* name; unsigned int color; } NSVGNamedColor; NSVGNamedColor nsvg__colors[] = { { "red", NSVG_RGB(255, 0, 0) }, { "green", NSVG_RGB( 0, 128, 0) }, { "blue", NSVG_RGB( 0, 0, 255) }, { "yellow", NSVG_RGB(255, 255, 0) }, { "cyan", NSVG_RGB( 0, 255, 255) }, { "magenta", NSVG_RGB(255, 0, 255) }, { "black", NSVG_RGB( 0, 0, 0) }, { "grey", NSVG_RGB(128, 128, 128) }, { "gray", NSVG_RGB(128, 128, 128) }, { "white", NSVG_RGB(255, 255, 255) }, #ifdef NANOSVG_ALL_COLOR_KEYWORDS { "aliceblue", NSVG_RGB(240, 248, 255) }, { "antiquewhite", NSVG_RGB(250, 235, 215) }, { "aqua", NSVG_RGB( 0, 255, 255) }, { "aquamarine", NSVG_RGB(127, 255, 212) }, { "azure", NSVG_RGB(240, 255, 255) }, { "beige", NSVG_RGB(245, 245, 220) }, { "bisque", NSVG_RGB(255, 228, 196) }, { "blanchedalmond", NSVG_RGB(255, 235, 205) }, { "blueviolet", NSVG_RGB(138, 43, 226) }, { "brown", NSVG_RGB(165, 42, 42) }, { "burlywood", NSVG_RGB(222, 184, 135) }, { "cadetblue", NSVG_RGB( 95, 158, 160) }, { "chartreuse", NSVG_RGB(127, 255, 0) }, { "chocolate", NSVG_RGB(210, 105, 30) }, { "coral", NSVG_RGB(255, 127, 80) }, { "cornflowerblue", NSVG_RGB(100, 149, 237) }, { "cornsilk", NSVG_RGB(255, 248, 220) }, { "crimson", NSVG_RGB(220, 20, 60) }, { "darkblue", NSVG_RGB( 0, 0, 139) }, { "darkcyan", NSVG_RGB( 0, 139, 139) }, { "darkgoldenrod", NSVG_RGB(184, 134, 11) }, { "darkgray", NSVG_RGB(169, 169, 169) }, { "darkgreen", NSVG_RGB( 0, 100, 0) }, { "darkgrey", NSVG_RGB(169, 169, 169) }, { "darkkhaki", NSVG_RGB(189, 183, 107) }, { "darkmagenta", NSVG_RGB(139, 0, 139) }, { "darkolivegreen", NSVG_RGB( 85, 107, 47) }, { "darkorange", NSVG_RGB(255, 140, 0) }, { "darkorchid", NSVG_RGB(153, 50, 204) }, { "darkred", NSVG_RGB(139, 0, 0) }, { "darksalmon", NSVG_RGB(233, 150, 122) }, { "darkseagreen", NSVG_RGB(143, 188, 143) }, { "darkslateblue", NSVG_RGB( 72, 61, 139) }, { "darkslategray", NSVG_RGB( 47, 79, 79) }, { "darkslategrey", NSVG_RGB( 47, 79, 79) }, { "darkturquoise", NSVG_RGB( 0, 206, 209) }, { "darkviolet", NSVG_RGB(148, 0, 211) }, { "deeppink", NSVG_RGB(255, 20, 147) }, { "deepskyblue", NSVG_RGB( 0, 191, 255) }, { "dimgray", NSVG_RGB(105, 105, 105) }, { "dimgrey", NSVG_RGB(105, 105, 105) }, { "dodgerblue", NSVG_RGB( 30, 144, 255) }, { "firebrick", NSVG_RGB(178, 34, 34) }, { "floralwhite", NSVG_RGB(255, 250, 240) }, { "forestgreen", NSVG_RGB( 34, 139, 34) }, { "fuchsia", NSVG_RGB(255, 0, 255) }, { "gainsboro", NSVG_RGB(220, 220, 220) }, { "ghostwhite", NSVG_RGB(248, 248, 255) }, { "gold", NSVG_RGB(255, 215, 0) }, { "goldenrod", NSVG_RGB(218, 165, 32) }, { "greenyellow", NSVG_RGB(173, 255, 47) }, { "honeydew", NSVG_RGB(240, 255, 240) }, { "hotpink", NSVG_RGB(255, 105, 180) }, { "indianred", NSVG_RGB(205, 92, 92) }, { "indigo", NSVG_RGB( 75, 0, 130) }, { "ivory", NSVG_RGB(255, 255, 240) }, { "khaki", NSVG_RGB(240, 230, 140) }, { "lavender", NSVG_RGB(230, 230, 250) }, { "lavenderblush", NSVG_RGB(255, 240, 245) }, { "lawngreen", NSVG_RGB(124, 252, 0) }, { "lemonchiffon", NSVG_RGB(255, 250, 205) }, { "lightblue", NSVG_RGB(173, 216, 230) }, { "lightcoral", NSVG_RGB(240, 128, 128) }, { "lightcyan", NSVG_RGB(224, 255, 255) }, { "lightgoldenrodyellow", NSVG_RGB(250, 250, 210) }, { "lightgray", NSVG_RGB(211, 211, 211) }, { "lightgreen", NSVG_RGB(144, 238, 144) }, { "lightgrey", NSVG_RGB(211, 211, 211) }, { "lightpink", NSVG_RGB(255, 182, 193) }, { "lightsalmon", NSVG_RGB(255, 160, 122) }, { "lightseagreen", NSVG_RGB( 32, 178, 170) }, { "lightskyblue", NSVG_RGB(135, 206, 250) }, { "lightslategray", NSVG_RGB(119, 136, 153) }, { "lightslategrey", NSVG_RGB(119, 136, 153) }, { "lightsteelblue", NSVG_RGB(176, 196, 222) }, { "lightyellow", NSVG_RGB(255, 255, 224) }, { "lime", NSVG_RGB( 0, 255, 0) }, { "limegreen", NSVG_RGB( 50, 205, 50) }, { "linen", NSVG_RGB(250, 240, 230) }, { "maroon", NSVG_RGB(128, 0, 0) }, { "mediumaquamarine", NSVG_RGB(102, 205, 170) }, { "mediumblue", NSVG_RGB( 0, 0, 205) }, { "mediumorchid", NSVG_RGB(186, 85, 211) }, { "mediumpurple", NSVG_RGB(147, 112, 219) }, { "mediumseagreen", NSVG_RGB( 60, 179, 113) }, { "mediumslateblue", NSVG_RGB(123, 104, 238) }, { "mediumspringgreen", NSVG_RGB( 0, 250, 154) }, { "mediumturquoise", NSVG_RGB( 72, 209, 204) }, { "mediumvioletred", NSVG_RGB(199, 21, 133) }, { "midnightblue", NSVG_RGB( 25, 25, 112) }, { "mintcream", NSVG_RGB(245, 255, 250) }, { "mistyrose", NSVG_RGB(255, 228, 225) }, { "moccasin", NSVG_RGB(255, 228, 181) }, { "navajowhite", NSVG_RGB(255, 222, 173) }, { "navy", NSVG_RGB( 0, 0, 128) }, { "oldlace", NSVG_RGB(253, 245, 230) }, { "olive", NSVG_RGB(128, 128, 0) }, { "olivedrab", NSVG_RGB(107, 142, 35) }, { "orange", NSVG_RGB(255, 165, 0) }, { "orangered", NSVG_RGB(255, 69, 0) }, { "orchid", NSVG_RGB(218, 112, 214) }, { "palegoldenrod", NSVG_RGB(238, 232, 170) }, { "palegreen", NSVG_RGB(152, 251, 152) }, { "paleturquoise", NSVG_RGB(175, 238, 238) }, { "palevioletred", NSVG_RGB(219, 112, 147) }, { "papayawhip", NSVG_RGB(255, 239, 213) }, { "peachpuff", NSVG_RGB(255, 218, 185) }, { "peru", NSVG_RGB(205, 133, 63) }, { "pink", NSVG_RGB(255, 192, 203) }, { "plum", NSVG_RGB(221, 160, 221) }, { "powderblue", NSVG_RGB(176, 224, 230) }, { "purple", NSVG_RGB(128, 0, 128) }, { "rosybrown", NSVG_RGB(188, 143, 143) }, { "royalblue", NSVG_RGB( 65, 105, 225) }, { "saddlebrown", NSVG_RGB(139, 69, 19) }, { "salmon", NSVG_RGB(250, 128, 114) }, { "sandybrown", NSVG_RGB(244, 164, 96) }, { "seagreen", NSVG_RGB( 46, 139, 87) }, { "seashell", NSVG_RGB(255, 245, 238) }, { "sienna", NSVG_RGB(160, 82, 45) }, { "silver", NSVG_RGB(192, 192, 192) }, { "skyblue", NSVG_RGB(135, 206, 235) }, { "slateblue", NSVG_RGB(106, 90, 205) }, { "slategray", NSVG_RGB(112, 128, 144) }, { "slategrey", NSVG_RGB(112, 128, 144) }, { "snow", NSVG_RGB(255, 250, 250) }, { "springgreen", NSVG_RGB( 0, 255, 127) }, { "steelblue", NSVG_RGB( 70, 130, 180) }, { "tan", NSVG_RGB(210, 180, 140) }, { "teal", NSVG_RGB( 0, 128, 128) }, { "thistle", NSVG_RGB(216, 191, 216) }, { "tomato", NSVG_RGB(255, 99, 71) }, { "turquoise", NSVG_RGB( 64, 224, 208) }, { "violet", NSVG_RGB(238, 130, 238) }, { "wheat", NSVG_RGB(245, 222, 179) }, { "whitesmoke", NSVG_RGB(245, 245, 245) }, { "yellowgreen", NSVG_RGB(154, 205, 50) }, #endif }; static unsigned int nsvg__parseColorName(const char* str) { int i, ncolors = sizeof(nsvg__colors) / sizeof(NSVGNamedColor); for (i = 0; i < ncolors; i++) { if (strcmp(nsvg__colors[i].name, str) == 0) { return nsvg__colors[i].color; } } return NSVG_RGB(128, 128, 128); } static unsigned int nsvg__parseColor(const char* str) { size_t len = 0; while(*str == ' ') ++str; len = strlen(str); if (len >= 1 && *str == '#') return nsvg__parseColorHex(str); else if (len >= 4 && str[0] == 'r' && str[1] == 'g' && str[2] == 'b' && str[3] == '(') return nsvg__parseColorRGB(str); return nsvg__parseColorName(str); } static float nsvg__parseOpacity(const char* str) { float val = nsvg__atof(str); if (val < 0.0f) val = 0.0f; if (val > 1.0f) val = 1.0f; return val; } static float nsvg__parseMiterLimit(const char* str) { float val = nsvg__atof(str); if (val < 0.0f) val = 0.0f; return val; } static int nsvg__parseUnits(const char* units) { if (units[0] == 'p' && units[1] == 'x') return NSVG_UNITS_PX; else if (units[0] == 'p' && units[1] == 't') return NSVG_UNITS_PT; else if (units[0] == 'p' && units[1] == 'c') return NSVG_UNITS_PC; else if (units[0] == 'm' && units[1] == 'm') return NSVG_UNITS_MM; else if (units[0] == 'c' && units[1] == 'm') return NSVG_UNITS_CM; else if (units[0] == 'i' && units[1] == 'n') return NSVG_UNITS_IN; else if (units[0] == '%') return NSVG_UNITS_PERCENT; else if (units[0] == 'e' && units[1] == 'm') return NSVG_UNITS_EM; else if (units[0] == 'e' && units[1] == 'x') return NSVG_UNITS_EX; return NSVG_UNITS_USER; } static int nsvg__isCoordinate(const char* s) { // optional sign if (*s == '-' || *s == '+') s++; // must have at least one digit, or start by a dot return (nsvg__isdigit(*s) || *s == '.'); } static NSVGcoordinate nsvg__parseCoordinateRaw(const char* str) { NSVGcoordinate coord = {0, NSVG_UNITS_USER}; char buf[64]; coord.units = nsvg__parseUnits(nsvg__parseNumber(str, buf, 64)); coord.value = nsvg__atof(buf); return coord; } static NSVGcoordinate nsvg__coord(float v, int units) { NSVGcoordinate coord = {v, units}; return coord; } static float nsvg__parseCoordinate(NSVGparser* p, const char* str, float orig, float length) { NSVGcoordinate coord = nsvg__parseCoordinateRaw(str); return nsvg__convertToPixels(p, coord, orig, length); } static int nsvg__parseTransformArgs(const char* str, float* args, int maxNa, int* na) { const char* end; const char* ptr; char it[64]; *na = 0; ptr = str; while (*ptr && *ptr != '(') ++ptr; if (*ptr == 0) return 1; end = ptr; while (*end && *end != ')') ++end; if (*end == 0) return 1; while (ptr < end) { if (*ptr == '-' || *ptr == '+' || *ptr == '.' || nsvg__isdigit(*ptr)) { if (*na >= maxNa) return 0; ptr = nsvg__parseNumber(ptr, it, 64); args[(*na)++] = (float)nsvg__atof(it); } else { ++ptr; } } return (int)(end - str); } static int nsvg__parseMatrix(float* xform, const char* str) { float t[6]; int na = 0; int len = nsvg__parseTransformArgs(str, t, 6, &na); if (na != 6) return len; memcpy(xform, t, sizeof(float)*6); return len; } static int nsvg__parseTranslate(float* xform, const char* str) { float args[2]; float t[6]; int na = 0; int len = nsvg__parseTransformArgs(str, args, 2, &na); if (na == 1) args[1] = 0.0; nsvg__xformSetTranslation(t, args[0], args[1]); memcpy(xform, t, sizeof(float)*6); return len; } static int nsvg__parseScale(float* xform, const char* str) { float args[2]; int na = 0; float t[6]; int len = nsvg__parseTransformArgs(str, args, 2, &na); if (na == 1) args[1] = args[0]; nsvg__xformSetScale(t, args[0], args[1]); memcpy(xform, t, sizeof(float)*6); return len; } static int nsvg__parseSkewX(float* xform, const char* str) { float args[1]; int na = 0; float t[6]; int len = nsvg__parseTransformArgs(str, args, 1, &na); nsvg__xformSetSkewX(t, args[0]/180.0f*NSVG_PI); memcpy(xform, t, sizeof(float)*6); return len; } static int nsvg__parseSkewY(float* xform, const char* str) { float args[1]; int na = 0; float t[6]; int len = nsvg__parseTransformArgs(str, args, 1, &na); nsvg__xformSetSkewY(t, args[0]/180.0f*NSVG_PI); memcpy(xform, t, sizeof(float)*6); return len; } static int nsvg__parseRotate(float* xform, const char* str) { float args[3]; int na = 0; float m[6]; float t[6]; int len = nsvg__parseTransformArgs(str, args, 3, &na); if (na == 1) args[1] = args[2] = 0.0f; nsvg__xformIdentity(m); if (na > 1) { nsvg__xformSetTranslation(t, -args[1], -args[2]); nsvg__xformMultiply(m, t); } nsvg__xformSetRotation(t, args[0]/180.0f*NSVG_PI); nsvg__xformMultiply(m, t); if (na > 1) { nsvg__xformSetTranslation(t, args[1], args[2]); nsvg__xformMultiply(m, t); } memcpy(xform, m, sizeof(float)*6); return len; } static void nsvg__parseTransform(float* xform, const char* str) { float t[6]; int len; nsvg__xformIdentity(xform); while (*str) { if (strncmp(str, "matrix", 6) == 0) len = nsvg__parseMatrix(t, str); else if (strncmp(str, "translate", 9) == 0) len = nsvg__parseTranslate(t, str); else if (strncmp(str, "scale", 5) == 0) len = nsvg__parseScale(t, str); else if (strncmp(str, "rotate", 6) == 0) len = nsvg__parseRotate(t, str); else if (strncmp(str, "skewX", 5) == 0) len = nsvg__parseSkewX(t, str); else if (strncmp(str, "skewY", 5) == 0) len = nsvg__parseSkewY(t, str); else{ ++str; continue; } if (len != 0) { str += len; } else { ++str; continue; } nsvg__xformPremultiply(xform, t); } } static void nsvg__parseUrl(char* id, const char* str) { int i = 0; str += 4; // "url("; if (*str == '#') str++; while (i < 63 && *str != ')') { id[i] = *str++; i++; } id[i] = '\0'; } static char nsvg__parseLineCap(const char* str) { if (strcmp(str, "butt") == 0) return NSVG_CAP_BUTT; else if (strcmp(str, "round") == 0) return NSVG_CAP_ROUND; else if (strcmp(str, "square") == 0) return NSVG_CAP_SQUARE; // TODO: handle inherit. return NSVG_CAP_BUTT; } static char nsvg__parseLineJoin(const char* str) { if (strcmp(str, "miter") == 0) return NSVG_JOIN_MITER; else if (strcmp(str, "round") == 0) return NSVG_JOIN_ROUND; else if (strcmp(str, "bevel") == 0) return NSVG_JOIN_BEVEL; // TODO: handle inherit. return NSVG_JOIN_MITER; } static char nsvg__parseFillRule(const char* str) { if (strcmp(str, "nonzero") == 0) return NSVG_FILLRULE_NONZERO; else if (strcmp(str, "evenodd") == 0) return NSVG_FILLRULE_EVENODD; // TODO: handle inherit. return NSVG_FILLRULE_NONZERO; } static const char* nsvg__getNextDashItem(const char* s, char* it) { int n = 0; it[0] = '\0'; // Skip white spaces and commas while (*s && (nsvg__isspace(*s) || *s == ',')) s++; // Advance until whitespace, comma or end. while (*s && (!nsvg__isspace(*s) && *s != ',')) { if (n < 63) it[n++] = *s; s++; } it[n++] = '\0'; return s; } static int nsvg__parseStrokeDashArray(NSVGparser* p, const char* str, float* strokeDashArray) { char item[64]; int count = 0, i; float sum = 0.0f; // Handle "none" if (str[0] == 'n') return 0; // Parse dashes while (*str) { str = nsvg__getNextDashItem(str, item); if (!*item) break; if (count < NSVG_MAX_DASHES) strokeDashArray[count++] = fabsf(nsvg__parseCoordinate(p, item, 0.0f, nsvg__actualLength(p))); } for (i = 0; i < count; i++) sum += strokeDashArray[i]; if (sum <= 1e-6f) count = 0; return count; } static void nsvg__parseStyle(NSVGparser* p, const char* str); static int nsvg__parseAttr(NSVGparser* p, const char* name, const char* value) { float xform[6]; NSVGattrib* attr = nsvg__getAttr(p); if (!attr) return 0; if (strcmp(name, "style") == 0) { nsvg__parseStyle(p, value); } else if (strcmp(name, "display") == 0) { if (strcmp(value, "none") == 0) attr->visible = 0; // Don't reset ->visible on display:inline, one display:none hides the whole subtree } else if (strcmp(name, "fill") == 0) { if (strcmp(value, "none") == 0) { attr->hasFill = 0; } else if (strncmp(value, "url(", 4) == 0) { attr->hasFill = 2; nsvg__parseUrl(attr->fillGradient, value); } else { attr->hasFill = 1; attr->fillColor = nsvg__parseColor(value); } } else if (strcmp(name, "opacity") == 0) { attr->opacity = nsvg__parseOpacity(value); } else if (strcmp(name, "fill-opacity") == 0) { attr->fillOpacity = nsvg__parseOpacity(value); } else if (strcmp(name, "stroke") == 0) { if (strcmp(value, "none") == 0) { attr->hasStroke = 0; } else if (strncmp(value, "url(", 4) == 0) { attr->hasStroke = 2; nsvg__parseUrl(attr->strokeGradient, value); } else { attr->hasStroke = 1; attr->strokeColor = nsvg__parseColor(value); } } else if (strcmp(name, "stroke-width") == 0) { attr->strokeWidth = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p)); } else if (strcmp(name, "stroke-dasharray") == 0) { attr->strokeDashCount = nsvg__parseStrokeDashArray(p, value, attr->strokeDashArray); } else if (strcmp(name, "stroke-dashoffset") == 0) { attr->strokeDashOffset = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p)); } else if (strcmp(name, "stroke-opacity") == 0) { attr->strokeOpacity = nsvg__parseOpacity(value); } else if (strcmp(name, "stroke-linecap") == 0) { attr->strokeLineCap = nsvg__parseLineCap(value); } else if (strcmp(name, "stroke-linejoin") == 0) { attr->strokeLineJoin = nsvg__parseLineJoin(value); } else if (strcmp(name, "stroke-miterlimit") == 0) { attr->miterLimit = nsvg__parseMiterLimit(value); } else if (strcmp(name, "fill-rule") == 0) { attr->fillRule = nsvg__parseFillRule(value); } else if (strcmp(name, "font-size") == 0) { attr->fontSize = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p)); } else if (strcmp(name, "transform") == 0) { nsvg__parseTransform(xform, value); nsvg__xformPremultiply(attr->xform, xform); } else if (strcmp(name, "stop-color") == 0) { attr->stopColor = nsvg__parseColor(value); } else if (strcmp(name, "stop-opacity") == 0) { attr->stopOpacity = nsvg__parseOpacity(value); } else if (strcmp(name, "offset") == 0) { attr->stopOffset = nsvg__parseCoordinate(p, value, 0.0f, 1.0f); } else if (strcmp(name, "id") == 0) { strncpy(attr->id, value, 63); attr->id[63] = '\0'; } else { return 0; } return 1; } static int nsvg__parseNameValue(NSVGparser* p, const char* start, const char* end) { const char* str; const char* val; char name[512]; char value[512]; int n; str = start; while (str < end && *str != ':') ++str; val = str; // Right Trim while (str > start && (*str == ':' || nsvg__isspace(*str))) --str; ++str; n = (int)(str - start); if (n > 511) n = 511; if (n) memcpy(name, start, n); name[n] = 0; while (val < end && (*val == ':' || nsvg__isspace(*val))) ++val; n = (int)(end - val); if (n > 511) n = 511; if (n) memcpy(value, val, n); value[n] = 0; return nsvg__parseAttr(p, name, value); } static void nsvg__parseStyle(NSVGparser* p, const char* str) { const char* start; const char* end; while (*str) { // Left Trim while(*str && nsvg__isspace(*str)) ++str; start = str; while(*str && *str != ';') ++str; end = str; // Right Trim while (end > start && (*end == ';' || nsvg__isspace(*end))) --end; ++end; nsvg__parseNameValue(p, start, end); if (*str) ++str; } } static void nsvg__parseAttribs(NSVGparser* p, const char** attr) { int i; for (i = 0; attr[i]; i += 2) { if (strcmp(attr[i], "style") == 0) nsvg__parseStyle(p, attr[i + 1]); else nsvg__parseAttr(p, attr[i], attr[i + 1]); } } static int nsvg__getArgsPerElement(char cmd) { switch (cmd) { case 'v': case 'V': case 'h': case 'H': return 1; case 'm': case 'M': case 'l': case 'L': case 't': case 'T': return 2; case 'q': case 'Q': case 's': case 'S': return 4; case 'c': case 'C': return 6; case 'a': case 'A': return 7; case 'z': case 'Z': return 0; } return -1; } static void nsvg__pathMoveTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel) { if (rel) { *cpx += args[0]; *cpy += args[1]; } else { *cpx = args[0]; *cpy = args[1]; } nsvg__moveTo(p, *cpx, *cpy); } static void nsvg__pathLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel) { if (rel) { *cpx += args[0]; *cpy += args[1]; } else { *cpx = args[0]; *cpy = args[1]; } nsvg__lineTo(p, *cpx, *cpy); } static void nsvg__pathHLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel) { if (rel) *cpx += args[0]; else *cpx = args[0]; nsvg__lineTo(p, *cpx, *cpy); } static void nsvg__pathVLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel) { if (rel) *cpy += args[0]; else *cpy = args[0]; nsvg__lineTo(p, *cpx, *cpy); } static void nsvg__pathCubicBezTo(NSVGparser* p, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel) { float x2, y2, cx1, cy1, cx2, cy2; if (rel) { cx1 = *cpx + args[0]; cy1 = *cpy + args[1]; cx2 = *cpx + args[2]; cy2 = *cpy + args[3]; x2 = *cpx + args[4]; y2 = *cpy + args[5]; } else { cx1 = args[0]; cy1 = args[1]; cx2 = args[2]; cy2 = args[3]; x2 = args[4]; y2 = args[5]; } nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2); *cpx2 = cx2; *cpy2 = cy2; *cpx = x2; *cpy = y2; } static void nsvg__pathCubicBezShortTo(NSVGparser* p, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel) { float x1, y1, x2, y2, cx1, cy1, cx2, cy2; x1 = *cpx; y1 = *cpy; if (rel) { cx2 = *cpx + args[0]; cy2 = *cpy + args[1]; x2 = *cpx + args[2]; y2 = *cpy + args[3]; } else { cx2 = args[0]; cy2 = args[1]; x2 = args[2]; y2 = args[3]; } cx1 = 2*x1 - *cpx2; cy1 = 2*y1 - *cpy2; nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2); *cpx2 = cx2; *cpy2 = cy2; *cpx = x2; *cpy = y2; } static void nsvg__pathQuadBezTo(NSVGparser* p, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel) { float x1, y1, x2, y2, cx, cy; float cx1, cy1, cx2, cy2; x1 = *cpx; y1 = *cpy; if (rel) { cx = *cpx + args[0]; cy = *cpy + args[1]; x2 = *cpx + args[2]; y2 = *cpy + args[3]; } else { cx = args[0]; cy = args[1]; x2 = args[2]; y2 = args[3]; } // Convert to cubic bezier cx1 = x1 + 2.0f/3.0f*(cx - x1); cy1 = y1 + 2.0f/3.0f*(cy - y1); cx2 = x2 + 2.0f/3.0f*(cx - x2); cy2 = y2 + 2.0f/3.0f*(cy - y2); nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2); *cpx2 = cx; *cpy2 = cy; *cpx = x2; *cpy = y2; } static void nsvg__pathQuadBezShortTo(NSVGparser* p, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel) { float x1, y1, x2, y2, cx, cy; float cx1, cy1, cx2, cy2; x1 = *cpx; y1 = *cpy; if (rel) { x2 = *cpx + args[0]; y2 = *cpy + args[1]; } else { x2 = args[0]; y2 = args[1]; } cx = 2*x1 - *cpx2; cy = 2*y1 - *cpy2; // Convert to cubix bezier cx1 = x1 + 2.0f/3.0f*(cx - x1); cy1 = y1 + 2.0f/3.0f*(cy - y1); cx2 = x2 + 2.0f/3.0f*(cx - x2); cy2 = y2 + 2.0f/3.0f*(cy - y2); nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2); *cpx2 = cx; *cpy2 = cy; *cpx = x2; *cpy = y2; } static float nsvg__sqr(float x) { return x*x; } static float nsvg__vmag(float x, float y) { return sqrtf(x*x + y*y); } static float nsvg__vecrat(float ux, float uy, float vx, float vy) { return (ux*vx + uy*vy) / (nsvg__vmag(ux,uy) * nsvg__vmag(vx,vy)); } static float nsvg__vecang(float ux, float uy, float vx, float vy) { float r = nsvg__vecrat(ux,uy, vx,vy); if (r < -1.0f) r = -1.0f; if (r > 1.0f) r = 1.0f; return ((ux*vy < uy*vx) ? -1.0f : 1.0f) * acosf(r); } static void nsvg__pathArcTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel) { // Ported from canvg (https://code.google.com/p/canvg/) float rx, ry, rotx; float x1, y1, x2, y2, cx, cy, dx, dy, d; float x1p, y1p, cxp, cyp, s, sa, sb; float ux, uy, vx, vy, a1, da; float x, y, tanx, tany, a, px = 0, py = 0, ptanx = 0, ptany = 0, t[6]; float sinrx, cosrx; int fa, fs; int i, ndivs; float hda, kappa; rx = fabsf(args[0]); // y radius ry = fabsf(args[1]); // x radius rotx = args[2] / 180.0f * NSVG_PI; // x rotation angle fa = fabsf(args[3]) > 1e-6 ? 1 : 0; // Large arc fs = fabsf(args[4]) > 1e-6 ? 1 : 0; // Sweep direction x1 = *cpx; // start point y1 = *cpy; if (rel) { // end point x2 = *cpx + args[5]; y2 = *cpy + args[6]; } else { x2 = args[5]; y2 = args[6]; } dx = x1 - x2; dy = y1 - y2; d = sqrtf(dx*dx + dy*dy); if (d < 1e-6f || rx < 1e-6f || ry < 1e-6f) { // The arc degenerates to a line nsvg__lineTo(p, x2, y2); *cpx = x2; *cpy = y2; return; } sinrx = sinf(rotx); cosrx = cosf(rotx); // Convert to center point parameterization. // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes // 1) Compute x1', y1' x1p = cosrx * dx / 2.0f + sinrx * dy / 2.0f; y1p = -sinrx * dx / 2.0f + cosrx * dy / 2.0f; d = nsvg__sqr(x1p)/nsvg__sqr(rx) + nsvg__sqr(y1p)/nsvg__sqr(ry); if (d > 1) { d = sqrtf(d); rx *= d; ry *= d; } // 2) Compute cx', cy' s = 0.0f; sa = nsvg__sqr(rx)*nsvg__sqr(ry) - nsvg__sqr(rx)*nsvg__sqr(y1p) - nsvg__sqr(ry)*nsvg__sqr(x1p); sb = nsvg__sqr(rx)*nsvg__sqr(y1p) + nsvg__sqr(ry)*nsvg__sqr(x1p); if (sa < 0.0f) sa = 0.0f; if (sb > 0.0f) s = sqrtf(sa / sb); if (fa == fs) s = -s; cxp = s * rx * y1p / ry; cyp = s * -ry * x1p / rx; // 3) Compute cx,cy from cx',cy' cx = (x1 + x2)/2.0f + cosrx*cxp - sinrx*cyp; cy = (y1 + y2)/2.0f + sinrx*cxp + cosrx*cyp; // 4) Calculate theta1, and delta theta. ux = (x1p - cxp) / rx; uy = (y1p - cyp) / ry; vx = (-x1p - cxp) / rx; vy = (-y1p - cyp) / ry; a1 = nsvg__vecang(1.0f,0.0f, ux,uy); // Initial angle da = nsvg__vecang(ux,uy, vx,vy); // Delta angle // if (vecrat(ux,uy,vx,vy) <= -1.0f) da = NSVG_PI; // if (vecrat(ux,uy,vx,vy) >= 1.0f) da = 0; if (fs == 0 && da > 0) da -= 2 * NSVG_PI; else if (fs == 1 && da < 0) da += 2 * NSVG_PI; // Approximate the arc using cubic spline segments. t[0] = cosrx; t[1] = sinrx; t[2] = -sinrx; t[3] = cosrx; t[4] = cx; t[5] = cy; // Split arc into max 90 degree segments. // The loop assumes an iteration per end point (including start and end), this +1. ndivs = (int)(fabsf(da) / (NSVG_PI*0.5f) + 1.0f); hda = (da / (float)ndivs) / 2.0f; // Fix for ticket #179: division by 0: avoid cotangens around 0 (infinite) if ((hda < 1e-3f) && (hda > -1e-3f)) hda *= 0.5f; else hda = (1.0f - cosf(hda)) / sinf(hda); kappa = fabsf(4.0f / 3.0f * hda); if (da < 0.0f) kappa = -kappa; for (i = 0; i <= ndivs; i++) { a = a1 + da * ((float)i/(float)ndivs); dx = cosf(a); dy = sinf(a); nsvg__xformPoint(&x, &y, dx*rx, dy*ry, t); // position nsvg__xformVec(&tanx, &tany, -dy*rx * kappa, dx*ry * kappa, t); // tangent if (i > 0) nsvg__cubicBezTo(p, px+ptanx,py+ptany, x-tanx, y-tany, x, y); px = x; py = y; ptanx = tanx; ptany = tany; } *cpx = x2; *cpy = y2; } static void nsvg__parsePath(NSVGparser* p, const char** attr) { const char* s = NULL; char cmd = '\0'; float args[10]; int nargs; int rargs = 0; char initPoint; float cpx, cpy, cpx2, cpy2; const char* tmp[4]; char closedFlag; int i; char item[64]; for (i = 0; attr[i]; i += 2) { if (strcmp(attr[i], "d") == 0) { s = attr[i + 1]; } else { tmp[0] = attr[i]; tmp[1] = attr[i + 1]; tmp[2] = 0; tmp[3] = 0; nsvg__parseAttribs(p, tmp); } } if (s) { nsvg__resetPath(p); cpx = 0; cpy = 0; cpx2 = 0; cpy2 = 0; initPoint = 0; closedFlag = 0; nargs = 0; while (*s) { s = nsvg__getNextPathItem(s, item); if (!*item) break; if (cmd != '\0' && nsvg__isCoordinate(item)) { if (nargs < 10) args[nargs++] = (float)nsvg__atof(item); if (nargs >= rargs) { switch (cmd) { case 'm': case 'M': nsvg__pathMoveTo(p, &cpx, &cpy, args, cmd == 'm' ? 1 : 0); // Moveto can be followed by multiple coordinate pairs, // which should be treated as linetos. cmd = (cmd == 'm') ? 'l' : 'L'; rargs = nsvg__getArgsPerElement(cmd); cpx2 = cpx; cpy2 = cpy; initPoint = 1; break; case 'l': case 'L': nsvg__pathLineTo(p, &cpx, &cpy, args, cmd == 'l' ? 1 : 0); cpx2 = cpx; cpy2 = cpy; break; case 'H': case 'h': nsvg__pathHLineTo(p, &cpx, &cpy, args, cmd == 'h' ? 1 : 0); cpx2 = cpx; cpy2 = cpy; break; case 'V': case 'v': nsvg__pathVLineTo(p, &cpx, &cpy, args, cmd == 'v' ? 1 : 0); cpx2 = cpx; cpy2 = cpy; break; case 'C': case 'c': nsvg__pathCubicBezTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'c' ? 1 : 0); break; case 'S': case 's': nsvg__pathCubicBezShortTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 's' ? 1 : 0); break; case 'Q': case 'q': nsvg__pathQuadBezTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'q' ? 1 : 0); break; case 'T': case 't': nsvg__pathQuadBezShortTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 't' ? 1 : 0); break; case 'A': case 'a': nsvg__pathArcTo(p, &cpx, &cpy, args, cmd == 'a' ? 1 : 0); cpx2 = cpx; cpy2 = cpy; break; default: if (nargs >= 2) { cpx = args[nargs-2]; cpy = args[nargs-1]; cpx2 = cpx; cpy2 = cpy; } break; } nargs = 0; } } else { cmd = item[0]; if (cmd == 'M' || cmd == 'm') { // Commit path. if (p->npts > 0) nsvg__addPath(p, closedFlag); // Start new subpath. nsvg__resetPath(p); closedFlag = 0; nargs = 0; } else if (initPoint == 0) { // Do not allow other commands until initial point has been set (moveTo called once). cmd = '\0'; } if (cmd == 'Z' || cmd == 'z') { closedFlag = 1; // Commit path. if (p->npts > 0) { // Move current point to first point cpx = p->pts[0]; cpy = p->pts[1]; cpx2 = cpx; cpy2 = cpy; nsvg__addPath(p, closedFlag); } // Start new subpath. nsvg__resetPath(p); nsvg__moveTo(p, cpx, cpy); closedFlag = 0; nargs = 0; } rargs = nsvg__getArgsPerElement(cmd); if (rargs == -1) { // Command not recognized cmd = '\0'; rargs = 0; } } } // Commit path. if (p->npts) nsvg__addPath(p, closedFlag); } nsvg__addShape(p); } static void nsvg__parseRect(NSVGparser* p, const char** attr) { float x = 0.0f; float y = 0.0f; float w = 0.0f; float h = 0.0f; float rx = -1.0f; // marks not set float ry = -1.0f; int i; for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "x") == 0) x = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p)); if (strcmp(attr[i], "y") == 0) y = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p)); if (strcmp(attr[i], "width") == 0) w = nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p)); if (strcmp(attr[i], "height") == 0) h = nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p)); if (strcmp(attr[i], "rx") == 0) rx = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p))); if (strcmp(attr[i], "ry") == 0) ry = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p))); } } if (rx < 0.0f && ry > 0.0f) rx = ry; if (ry < 0.0f && rx > 0.0f) ry = rx; if (rx < 0.0f) rx = 0.0f; if (ry < 0.0f) ry = 0.0f; if (rx > w/2.0f) rx = w/2.0f; if (ry > h/2.0f) ry = h/2.0f; if (w != 0.0f && h != 0.0f) { nsvg__resetPath(p); if (rx < 0.00001f || ry < 0.0001f) { nsvg__moveTo(p, x, y); nsvg__lineTo(p, x+w, y); nsvg__lineTo(p, x+w, y+h); nsvg__lineTo(p, x, y+h); } else { // Rounded rectangle nsvg__moveTo(p, x+rx, y); nsvg__lineTo(p, x+w-rx, y); nsvg__cubicBezTo(p, x+w-rx*(1-NSVG_KAPPA90), y, x+w, y+ry*(1-NSVG_KAPPA90), x+w, y+ry); nsvg__lineTo(p, x+w, y+h-ry); nsvg__cubicBezTo(p, x+w, y+h-ry*(1-NSVG_KAPPA90), x+w-rx*(1-NSVG_KAPPA90), y+h, x+w-rx, y+h); nsvg__lineTo(p, x+rx, y+h); nsvg__cubicBezTo(p, x+rx*(1-NSVG_KAPPA90), y+h, x, y+h-ry*(1-NSVG_KAPPA90), x, y+h-ry); nsvg__lineTo(p, x, y+ry); nsvg__cubicBezTo(p, x, y+ry*(1-NSVG_KAPPA90), x+rx*(1-NSVG_KAPPA90), y, x+rx, y); } nsvg__addPath(p, 1); nsvg__addShape(p); } } static void nsvg__parseCircle(NSVGparser* p, const char** attr) { float cx = 0.0f; float cy = 0.0f; float r = 0.0f; int i; for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "cx") == 0) cx = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p)); if (strcmp(attr[i], "cy") == 0) cy = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p)); if (strcmp(attr[i], "r") == 0) r = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualLength(p))); } } if (r > 0.0f) { nsvg__resetPath(p); nsvg__moveTo(p, cx+r, cy); nsvg__cubicBezTo(p, cx+r, cy+r*NSVG_KAPPA90, cx+r*NSVG_KAPPA90, cy+r, cx, cy+r); nsvg__cubicBezTo(p, cx-r*NSVG_KAPPA90, cy+r, cx-r, cy+r*NSVG_KAPPA90, cx-r, cy); nsvg__cubicBezTo(p, cx-r, cy-r*NSVG_KAPPA90, cx-r*NSVG_KAPPA90, cy-r, cx, cy-r); nsvg__cubicBezTo(p, cx+r*NSVG_KAPPA90, cy-r, cx+r, cy-r*NSVG_KAPPA90, cx+r, cy); nsvg__addPath(p, 1); nsvg__addShape(p); } } static void nsvg__parseEllipse(NSVGparser* p, const char** attr) { float cx = 0.0f; float cy = 0.0f; float rx = 0.0f; float ry = 0.0f; int i; for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "cx") == 0) cx = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p)); if (strcmp(attr[i], "cy") == 0) cy = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p)); if (strcmp(attr[i], "rx") == 0) rx = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p))); if (strcmp(attr[i], "ry") == 0) ry = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p))); } } if (rx > 0.0f && ry > 0.0f) { nsvg__resetPath(p); nsvg__moveTo(p, cx+rx, cy); nsvg__cubicBezTo(p, cx+rx, cy+ry*NSVG_KAPPA90, cx+rx*NSVG_KAPPA90, cy+ry, cx, cy+ry); nsvg__cubicBezTo(p, cx-rx*NSVG_KAPPA90, cy+ry, cx-rx, cy+ry*NSVG_KAPPA90, cx-rx, cy); nsvg__cubicBezTo(p, cx-rx, cy-ry*NSVG_KAPPA90, cx-rx*NSVG_KAPPA90, cy-ry, cx, cy-ry); nsvg__cubicBezTo(p, cx+rx*NSVG_KAPPA90, cy-ry, cx+rx, cy-ry*NSVG_KAPPA90, cx+rx, cy); nsvg__addPath(p, 1); nsvg__addShape(p); } } static void nsvg__parseLine(NSVGparser* p, const char** attr) { float x1 = 0.0; float y1 = 0.0; float x2 = 0.0; float y2 = 0.0; int i; for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "x1") == 0) x1 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigX(p), nsvg__actualWidth(p)); if (strcmp(attr[i], "y1") == 0) y1 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigY(p), nsvg__actualHeight(p)); if (strcmp(attr[i], "x2") == 0) x2 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigX(p), nsvg__actualWidth(p)); if (strcmp(attr[i], "y2") == 0) y2 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigY(p), nsvg__actualHeight(p)); } } nsvg__resetPath(p); nsvg__moveTo(p, x1, y1); nsvg__lineTo(p, x2, y2); nsvg__addPath(p, 0); nsvg__addShape(p); } static void nsvg__parsePoly(NSVGparser* p, const char** attr, int closeFlag) { int i; const char* s; float args[2]; int nargs, npts = 0; char item[64]; nsvg__resetPath(p); for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "points") == 0) { s = attr[i + 1]; nargs = 0; while (*s) { s = nsvg__getNextPathItem(s, item); args[nargs++] = (float)nsvg__atof(item); if (nargs >= 2) { if (npts == 0) nsvg__moveTo(p, args[0], args[1]); else nsvg__lineTo(p, args[0], args[1]); nargs = 0; npts++; } } } } } nsvg__addPath(p, (char)closeFlag); nsvg__addShape(p); } static void nsvg__parseSVG(NSVGparser* p, const char** attr) { int i; for (i = 0; attr[i]; i += 2) { if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "width") == 0) { p->image->width = nsvg__parseCoordinate(p, attr[i + 1], 0.0f, 0.0f); } else if (strcmp(attr[i], "height") == 0) { p->image->height = nsvg__parseCoordinate(p, attr[i + 1], 0.0f, 0.0f); } else if (strcmp(attr[i], "viewBox") == 0) { const char *s = attr[i + 1]; char buf[64]; s = nsvg__parseNumber(s, buf, 64); p->viewMinx = nsvg__atof(buf); while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++; if (!*s) return; s = nsvg__parseNumber(s, buf, 64); p->viewMiny = nsvg__atof(buf); while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++; if (!*s) return; s = nsvg__parseNumber(s, buf, 64); p->viewWidth = nsvg__atof(buf); while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++; if (!*s) return; s = nsvg__parseNumber(s, buf, 64); p->viewHeight = nsvg__atof(buf); } else if (strcmp(attr[i], "preserveAspectRatio") == 0) { if (strstr(attr[i + 1], "none") != 0) { // No uniform scaling p->alignType = NSVG_ALIGN_NONE; } else { // Parse X align if (strstr(attr[i + 1], "xMin") != 0) p->alignX = NSVG_ALIGN_MIN; else if (strstr(attr[i + 1], "xMid") != 0) p->alignX = NSVG_ALIGN_MID; else if (strstr(attr[i + 1], "xMax") != 0) p->alignX = NSVG_ALIGN_MAX; // Parse X align if (strstr(attr[i + 1], "yMin") != 0) p->alignY = NSVG_ALIGN_MIN; else if (strstr(attr[i + 1], "yMid") != 0) p->alignY = NSVG_ALIGN_MID; else if (strstr(attr[i + 1], "yMax") != 0) p->alignY = NSVG_ALIGN_MAX; // Parse meet/slice p->alignType = NSVG_ALIGN_MEET; if (strstr(attr[i + 1], "slice") != 0) p->alignType = NSVG_ALIGN_SLICE; } } } } } static void nsvg__parseGradient(NSVGparser* p, const char** attr, char type) { int i; NSVGgradientData* grad = (NSVGgradientData*)malloc(sizeof(NSVGgradientData)); if (grad == NULL) return; memset(grad, 0, sizeof(NSVGgradientData)); grad->units = NSVG_OBJECT_SPACE; grad->type = type; if (grad->type == NSVG_PAINT_LINEAR_GRADIENT) { grad->linear.x1 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT); grad->linear.y1 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT); grad->linear.x2 = nsvg__coord(100.0f, NSVG_UNITS_PERCENT); grad->linear.y2 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT); } else if (grad->type == NSVG_PAINT_RADIAL_GRADIENT) { grad->radial.cx = nsvg__coord(50.0f, NSVG_UNITS_PERCENT); grad->radial.cy = nsvg__coord(50.0f, NSVG_UNITS_PERCENT); grad->radial.r = nsvg__coord(50.0f, NSVG_UNITS_PERCENT); } nsvg__xformIdentity(grad->xform); for (i = 0; attr[i]; i += 2) { if (strcmp(attr[i], "id") == 0) { strncpy(grad->id, attr[i+1], 63); grad->id[63] = '\0'; } else if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) { if (strcmp(attr[i], "gradientUnits") == 0) { if (strcmp(attr[i+1], "objectBoundingBox") == 0) grad->units = NSVG_OBJECT_SPACE; else grad->units = NSVG_USER_SPACE; } else if (strcmp(attr[i], "gradientTransform") == 0) { nsvg__parseTransform(grad->xform, attr[i + 1]); } else if (strcmp(attr[i], "cx") == 0) { grad->radial.cx = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "cy") == 0) { grad->radial.cy = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "r") == 0) { grad->radial.r = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "fx") == 0) { grad->radial.fx = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "fy") == 0) { grad->radial.fy = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "x1") == 0) { grad->linear.x1 = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "y1") == 0) { grad->linear.y1 = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "x2") == 0) { grad->linear.x2 = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "y2") == 0) { grad->linear.y2 = nsvg__parseCoordinateRaw(attr[i + 1]); } else if (strcmp(attr[i], "spreadMethod") == 0) { if (strcmp(attr[i+1], "pad") == 0) grad->spread = NSVG_SPREAD_PAD; else if (strcmp(attr[i+1], "reflect") == 0) grad->spread = NSVG_SPREAD_REFLECT; else if (strcmp(attr[i+1], "repeat") == 0) grad->spread = NSVG_SPREAD_REPEAT; } else if (strcmp(attr[i], "xlink:href") == 0) { const char *href = attr[i+1]; strncpy(grad->ref, href+1, 62); grad->ref[62] = '\0'; } } } grad->next = p->gradients; p->gradients = grad; } static void nsvg__parseGradientStop(NSVGparser* p, const char** attr) { NSVGattrib* curAttr = nsvg__getAttr(p); NSVGgradientData* grad; NSVGgradientStop* stop; int i, idx; curAttr->stopOffset = 0; curAttr->stopColor = 0; curAttr->stopOpacity = 1.0f; for (i = 0; attr[i]; i += 2) { nsvg__parseAttr(p, attr[i], attr[i + 1]); } // Add stop to the last gradient. grad = p->gradients; if (grad == NULL) return; grad->nstops++; grad->stops = (NSVGgradientStop*)realloc(grad->stops, sizeof(NSVGgradientStop)*grad->nstops); if (grad->stops == NULL) return; // Insert idx = grad->nstops-1; for (i = 0; i < grad->nstops-1; i++) { if (curAttr->stopOffset < grad->stops[i].offset) { idx = i; break; } } if (idx != grad->nstops-1) { for (i = grad->nstops-1; i > idx; i--) grad->stops[i] = grad->stops[i-1]; } stop = &grad->stops[idx]; stop->color = curAttr->stopColor; stop->color |= (unsigned int)(curAttr->stopOpacity*255) << 24; stop->offset = curAttr->stopOffset; } static void nsvg__startElement(void* ud, const char* el, const char** attr) { NSVGparser* p = (NSVGparser*)ud; if (p->defsFlag) { // Skip everything but gradients in defs if (strcmp(el, "linearGradient") == 0) { nsvg__parseGradient(p, attr, NSVG_PAINT_LINEAR_GRADIENT); } else if (strcmp(el, "radialGradient") == 0) { nsvg__parseGradient(p, attr, NSVG_PAINT_RADIAL_GRADIENT); } else if (strcmp(el, "stop") == 0) { nsvg__parseGradientStop(p, attr); } return; } if (strcmp(el, "g") == 0) { nsvg__pushAttr(p); nsvg__parseAttribs(p, attr); } else if (strcmp(el, "path") == 0) { if (p->pathFlag) // Do not allow nested paths. return; nsvg__pushAttr(p); nsvg__parsePath(p, attr); nsvg__popAttr(p); } else if (strcmp(el, "rect") == 0) { nsvg__pushAttr(p); nsvg__parseRect(p, attr); nsvg__popAttr(p); } else if (strcmp(el, "circle") == 0) { nsvg__pushAttr(p); nsvg__parseCircle(p, attr); nsvg__popAttr(p); } else if (strcmp(el, "ellipse") == 0) { nsvg__pushAttr(p); nsvg__parseEllipse(p, attr); nsvg__popAttr(p); } else if (strcmp(el, "line") == 0) { nsvg__pushAttr(p); nsvg__parseLine(p, attr); nsvg__popAttr(p); } else if (strcmp(el, "polyline") == 0) { nsvg__pushAttr(p); nsvg__parsePoly(p, attr, 0); nsvg__popAttr(p); } else if (strcmp(el, "polygon") == 0) { nsvg__pushAttr(p); nsvg__parsePoly(p, attr, 1); nsvg__popAttr(p); } else if (strcmp(el, "linearGradient") == 0) { nsvg__parseGradient(p, attr, NSVG_PAINT_LINEAR_GRADIENT); } else if (strcmp(el, "radialGradient") == 0) { nsvg__parseGradient(p, attr, NSVG_PAINT_RADIAL_GRADIENT); } else if (strcmp(el, "stop") == 0) { nsvg__parseGradientStop(p, attr); } else if (strcmp(el, "defs") == 0) { p->defsFlag = 1; } else if (strcmp(el, "svg") == 0) { nsvg__parseSVG(p, attr); } } static void nsvg__endElement(void* ud, const char* el) { NSVGparser* p = (NSVGparser*)ud; if (strcmp(el, "g") == 0) { nsvg__popAttr(p); } else if (strcmp(el, "path") == 0) { p->pathFlag = 0; } else if (strcmp(el, "defs") == 0) { p->defsFlag = 0; } } static void nsvg__content(void* ud, const char* s) { NSVG_NOTUSED(ud); NSVG_NOTUSED(s); // empty } static void nsvg__imageBounds(NSVGparser* p, float* bounds) { NSVGshape* shape; shape = p->image->shapes; if (shape == NULL) { bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0; return; } bounds[0] = shape->bounds[0]; bounds[1] = shape->bounds[1]; bounds[2] = shape->bounds[2]; bounds[3] = shape->bounds[3]; for (shape = shape->next; shape != NULL; shape = shape->next) { bounds[0] = nsvg__minf(bounds[0], shape->bounds[0]); bounds[1] = nsvg__minf(bounds[1], shape->bounds[1]); bounds[2] = nsvg__maxf(bounds[2], shape->bounds[2]); bounds[3] = nsvg__maxf(bounds[3], shape->bounds[3]); } } static float nsvg__viewAlign(float content, float container, int type) { if (type == NSVG_ALIGN_MIN) return 0; else if (type == NSVG_ALIGN_MAX) return container - content; // mid return (container - content) * 0.5f; } static void nsvg__scaleGradient(NSVGgradient* grad, float tx, float ty, float sx, float sy) { float t[6]; nsvg__xformSetTranslation(t, tx, ty); nsvg__xformMultiply (grad->xform, t); nsvg__xformSetScale(t, sx, sy); nsvg__xformMultiply (grad->xform, t); } static void nsvg__scaleToViewbox(NSVGparser* p, const char* units) { NSVGshape* shape; NSVGpath* path; float tx, ty, sx, sy, us, bounds[4], t[6], avgs; int i; float* pt; // Guess image size if not set completely. nsvg__imageBounds(p, bounds); if (p->viewWidth == 0) { if (p->image->width > 0) { p->viewWidth = p->image->width; } else { p->viewMinx = bounds[0]; p->viewWidth = bounds[2] - bounds[0]; } } if (p->viewHeight == 0) { if (p->image->height > 0) { p->viewHeight = p->image->height; } else { p->viewMiny = bounds[1]; p->viewHeight = bounds[3] - bounds[1]; } } if (p->image->width == 0) p->image->width = p->viewWidth; if (p->image->height == 0) p->image->height = p->viewHeight; tx = -p->viewMinx; ty = -p->viewMiny; sx = p->viewWidth > 0 ? p->image->width / p->viewWidth : 0; sy = p->viewHeight > 0 ? p->image->height / p->viewHeight : 0; // Unit scaling us = 1.0f / nsvg__convertToPixels(p, nsvg__coord(1.0f, nsvg__parseUnits(units)), 0.0f, 1.0f); // Fix aspect ratio if (p->alignType == NSVG_ALIGN_MEET) { // fit whole image into viewbox sx = sy = nsvg__minf(sx, sy); tx += nsvg__viewAlign(p->viewWidth*sx, p->image->width, p->alignX) / sx; ty += nsvg__viewAlign(p->viewHeight*sy, p->image->height, p->alignY) / sy; } else if (p->alignType == NSVG_ALIGN_SLICE) { // fill whole viewbox with image sx = sy = nsvg__maxf(sx, sy); tx += nsvg__viewAlign(p->viewWidth*sx, p->image->width, p->alignX) / sx; ty += nsvg__viewAlign(p->viewHeight*sy, p->image->height, p->alignY) / sy; } // Transform sx *= us; sy *= us; avgs = (sx+sy) / 2.0f; for (shape = p->image->shapes; shape != NULL; shape = shape->next) { shape->bounds[0] = (shape->bounds[0] + tx) * sx; shape->bounds[1] = (shape->bounds[1] + ty) * sy; shape->bounds[2] = (shape->bounds[2] + tx) * sx; shape->bounds[3] = (shape->bounds[3] + ty) * sy; for (path = shape->paths; path != NULL; path = path->next) { path->bounds[0] = (path->bounds[0] + tx) * sx; path->bounds[1] = (path->bounds[1] + ty) * sy; path->bounds[2] = (path->bounds[2] + tx) * sx; path->bounds[3] = (path->bounds[3] + ty) * sy; for (i =0; i < path->npts; i++) { pt = &path->pts[i*2]; pt[0] = (pt[0] + tx) * sx; pt[1] = (pt[1] + ty) * sy; } } if (shape->fill.type == NSVG_PAINT_LINEAR_GRADIENT || shape->fill.type == NSVG_PAINT_RADIAL_GRADIENT) { nsvg__scaleGradient(shape->fill.gradient, tx,ty, sx,sy); memcpy(t, shape->fill.gradient->xform, sizeof(float)*6); nsvg__xformInverse(shape->fill.gradient->xform, t); } if (shape->stroke.type == NSVG_PAINT_LINEAR_GRADIENT || shape->stroke.type == NSVG_PAINT_RADIAL_GRADIENT) { nsvg__scaleGradient(shape->stroke.gradient, tx,ty, sx,sy); memcpy(t, shape->stroke.gradient->xform, sizeof(float)*6); nsvg__xformInverse(shape->stroke.gradient->xform, t); } shape->strokeWidth *= avgs; shape->strokeDashOffset *= avgs; for (i = 0; i < shape->strokeDashCount; i++) shape->strokeDashArray[i] *= avgs; } } NSVGimage* nsvgParse(char* input, const char* units, float dpi) { NSVGparser* p; NSVGimage* ret = 0; p = nsvg__createParser(); if (p == NULL) { return NULL; } p->dpi = dpi; nsvg__parseXML(input, nsvg__startElement, nsvg__endElement, nsvg__content, p); // Scale to viewBox nsvg__scaleToViewbox(p, units); ret = p->image; p->image = NULL; nsvg__deleteParser(p); return ret; } NSVGimage* nsvgParseFromFile(const char* filename, const char* units, float dpi) { FILE* fp = NULL; size_t size; char* data = NULL; NSVGimage* image = NULL; fp = fopen(filename, "rb"); if (!fp) goto error; fseek(fp, 0, SEEK_END); size = ftell(fp); fseek(fp, 0, SEEK_SET); data = (char*)malloc(size+1); if (data == NULL) goto error; if (fread(data, 1, size, fp) != size) goto error; data[size] = '\0'; // Must be null terminated. fclose(fp); image = nsvgParse(data, units, dpi); free(data); return image; error: if (fp) fclose(fp); if (data) free(data); if (image) nsvgDelete(image); return NULL; } NSVGpath* nsvgDuplicatePath(NSVGpath* p) { NSVGpath* res = NULL; if (p == NULL) return NULL; res = (NSVGpath*)malloc(sizeof(NSVGpath)); if (res == NULL) goto error; memset(res, 0, sizeof(NSVGpath)); res->pts = (float*)malloc(p->npts*2*sizeof(float)); if (res->pts == NULL) goto error; memcpy(res->pts, p->pts, p->npts * sizeof(float) * 2); res->npts = p->npts; memcpy(res->bounds, p->bounds, sizeof(p->bounds)); res->closed = p->closed; return res; error: if (res != NULL) { free(res->pts); free(res); } return NULL; } void nsvgDelete(NSVGimage* image) { NSVGshape *snext, *shape; if (image == NULL) return; shape = image->shapes; while (shape != NULL) { snext = shape->next; nsvg__deletePaths(shape->paths); nsvg__deletePaint(&shape->fill); nsvg__deletePaint(&shape->stroke); free(shape); shape = snext; } free(image); } #endif // NANOSVG_IMPLEMENTATION #endif // NANOSVG_H